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C.1 Hierarchical mixture model

In Figure C.1, we present the directed acyclic graph representation of the hierarchical version of our
baseline mixture model described in Section 2 of the paper. In this graph, squares represent quantities that
are fixed or observed, e.g., prior parameters and data, while circles represent unknown model parameters

that need to be estimated.
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Figure C.1: Representation of the hierarchical mixture model of fund returns as a directed acyclic graph. Squares
represent quantities that are fixed or observed, e.g., prior parameters and data, while circles represent unknown
model parameters that need to be estimated.

Comparing the graph in this figure with that for the non-hierarchical mixture model in Figure 1 in the
paper, we see that the difference between the two versions is that the hierarchical one takes as given the
prior distributions for the population parameters. First, this is necessary, since classical estimation would
be intractable. Second, we generally use weak priors, and furthermore we perform a prior sensitivity
analysis which shows that our posteriors are quite robust to varying the priors (see Section 8.1 in the

paper for a brief summary and Section C.12 in this appendix for details).
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C.2 Simulations

Here, we present additional results on the simulations we perform in Section 3 of the paper.

First, we present results relating to the first set of our simulations (see Table 1 in the paper), in which
we generate alphas from mixed distributions and compare our estimated proportions of skill types with
those obtained from fund-level hypothesis tests, with and without the FDR correction. In Table C.1, we
present the true percentiles of each simulated alpha distribution, as well as point and interval estimates
— the posterior mean and 90% Highest Posterior Density Interval (HPDI) — of these percentiles using
our methodology. These results show that our methodology is flexible enough to estimate well not only
the proportions of skill types but also the entire alpha distribution even, e.g., in cases in which nonzero
alphas are discrete or normal.

Next, we present results relating to the second set of our simulations (see Figure 2 in the paper), in
which we generate alphas from continuous distributions and compare our estimated distribution of alpha
with that of the hierarchical normal model. In Table C.2, we present the true percentiles of each simulated
alpha distribution, as well as point and interval estimates — the posterior mean and 90% HPDI — of
these percentiles using our methodology. The results in this table show that our model is flexible enough
to estimate reasonably well the entire alpha distribution in the case of both a normal distribution as well
as a skewed and fat-tailed distribution without a point mass at zero. In Table C.3, we present the true
percentiles of each simulated alpha distribution, as well as point and interval estimates — the posterior
mean and 90% HPDI — of these percentiles using the hierarchical normal model. As expected, the results
in this table show that the normal model can accurately estimate the distribution if alphas are drawn

from a normal, but grossly mis-estimates it if alphas are drawn from a skewed and fat-tailed distribution.
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Table C.1: Simulations with Mixed Distributions — True and Estimated Percentiles of Fund Skill Distribution

Results from simulations in which alphas (expressed as annualized percentages) are generated from mixed distributions with a point mass at zero and with nonzero alphas
drawn from a discrete distribution (in Panel A), a normal distribution (in Panel B), and a log-normal distribution (in Panel C). The data generating processes (DGPs) within
each panel differ in the proportions z°, 7 =, # T of funds with zero, negative, and positive alpha, respectively, and/or in the distance of nonzero alphas from zero. In Panel A,
a ~ 1%y + 7~ d,- + m T+, with large nonzero alphas x~ = —3.2 and x* = 3.8 and unequal proportions 7° = 0.75, z~ = 0.23, z+ = 0.02 (DGP D-1), and with
small nonzero alphas x~ = —1.2 and x ™ = 1.8 and equal proportions 7° = 0.34, 7~ = 0.33, #* = 0.33 (DGP D-2). In Panel B, a ~ 7% + 7 =" iy (a |-1.45,52)
with large variance o2 = 72 and a large point mass 7° = 0.90 (DGP N-1), and with small variance ¢ = 7.2 and a smaller point mass 7° = 0.35 (DGP N-2). In Panel
C,a~ n%g+ T~ fN (|a| |,u, 02) + 7t finn (|a| |,u, 02) with nonzero alphas far from zero i.e. © = 2 and o2 = 0.2 (DGP L-1), and close to zero i.e. i =1and
62 =035 (DGP L-2), and with proportions 79 =0.45, 7~ =0.28, T = 0.27 in both cases. For each DGP, we report the true percentiles of the alpha distribution and

their posterior mean and 90% HPDI estimated using our methodology.

Percentiles
0.5th 18t sth qoth  20th  3gth  4oth 50th goth 70th goth 9gth 9sth  ggth g9 5th

Panel A: Discrete nonzero alphas

DGP D-1: Large alphas ~ True -320 -320 -320 -320 -3.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.80 3.80
Posterior Mean -3.66  -3.57 -3.35 -3.22 -294 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.73 3.97

5% -378 -3.69 -342 -326 -3.04 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.51 3.78

95% -3.51 -346 -330 -3.17 -2.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 391 4.16

DGP D-2: Small alphas True -1.20 -120 -120 -1.20 -1.20 -1.20 0.00 0.00 0.00 1.80 1.80 1.80 1.80 1.80 1.80
Posterior Mean -1.52 -146 -1.30 -1.23 -1.12 -097 0.00 0.00 0.00 158 1.75 188 197 2.14 2.21

5% -166 -158 -137 -127 -1.16 -1.05 0.00 0.00 0.00 150 1.70 1.83 191 2.02 2.06

95% -1.37 -134 -124 -1.18 -1.06 -0.84 0.00 0.00 000 166 179 192 203 224 2.32

Panel B: Normal nonzero alphas

DGP N-1: Large variance True -15.48 -12.08 -143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.65 12.81
Posterior Mean -1595 -11.75 -1.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.03 12.50

5% -18.19 -13.24 -3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 7.85 10.92

95% -13.97 -1043 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1021 14.39

DGP N-2: Small variance True =776 713 524 -4.18 -2.78 -1.65 -0.66 0.00 0.00 0.00 0.00 139 242 451 5.25
Posterior Mean -8.02 -7.15 -5.10 -4.11 -2.81 -1.60 -0.75 0.00 0.00 0.00 0.06 1.28 226 4.32 5.25

5% -860 -756 -528 -426 -297 -1.78 -095 0.00 0.00 0.00 0.00 1.06 2.05 398 4.76

95% -7.54 -6.81 -493 -395 -2.65 -143 0.00 0.00 0.00 0.04 038 145 246 473 5.89

Panel C: Log-normal nonzero alphas

DGP L-1: Far from zero True -1992 -17.76 -12.38 -9.80 -6.32 0.00 0.00 0.00 0.00 0.00 5.87 9.30 1197 18.15 21.65
Posterior Mean -20.93 -18.30 -12.29 -9.56 -6.25 0.00 0.00 0.00 0.00 0.00 6.11 946 12.18 18.18 20.81

5% -22.04 -19.14 -12.71 -992 -6.60 0.00 0.00 0.00 0.00 0.00 575 9.15 11.78 1736 19.76

95% -19.87 -17.56 -11.87 -9.25 -594 0.00 0.00 0.00 0.00 0.00 6.40 9.77 12.63 19.01 2190

DGP L-2: Close to zero True 981 -842 -523 -384 -2.15 0.00 0.00 0.00 0.00 0.00 195 358 5.00 867 1095
Posterior Mean -10.19 -8.59 -5.17 -3.75 -2.15 0.00 0.00 0.00 0.00 0.00 2.05 3.68 5.16 878 10.51

5% -11.01 -922 -543 -394 -231 0.00 0.00 0.00 0.00 0.00 1.88 351 492 824 9.78

95% -945 -8.06 -495 -357 -197 0.00 0.00 0.00 000 000 223 386 539 934 1131
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Table C.2: Simulations with Continuous Distributions — True and Estimated Percentiles of Skill Distribution from Our Model

Results from simulations in which alphas (expressed as annualized percentages) are generated from continuous-distribution data generating processes (DGPs) and
are estimated using our methodology. In Panel A we present results for alphas simulated from a normal distribution, and in Panel B we present results for alphas
simulated from a negatively-skewed and fat-tailed distribution. Specifically, in Panel A, we present results for DGP C-1, i.e., a ~ far ( | u, 02), with g = 2.5
and o2 = 4. In Panel B, we present results for DGP C-2,i.e.,a ~ 2™V fN + 7= f~ + zt f+, with z"V = 0.10, 7~ = 0.80, z+ = 0.10, fV (a) = fn («]0,0.1),
(@) = finn (J]10.1,0.5) fora < 0,and f* (o) = finn (l2]10.1,0.5) for & > 0. For each DGP, we report the true percentiles of the alpha distribution and their
posterior mean and 90% HPDI estimated using our methodology. The 90% HPDI is the smallest interval such that the posterior probability that a parameter lies in it is
0.90.

Percentiles

05th st sth qoth  pgth  3gth  4oth  59th  goth  7oth  goth ggth gsth ggth g9 5th

Panel A: Normal alphas

DGP C-1 True 756 -695 -570 -501 -4.15 -3.51 299 247 -196 -146 -0.80 0.11 0.76 196 2.57
Posterior Mean 834 755 -574 -492 -402 341 -291 -244 -194 -141 -094 000 104 194 231

5% 902 -807 -593 -506 -4.14 -352 -3.02 256 -2.07 -1.59 -1.11 0.00 0.86 173 2.01

95% 772 713 -556 -478 -3.88 -328 -279 -2.32 -1.78 -126 -0.78 056 121 2.17  2.65

Panel B: Negatively skewed and fat-tailed alphas

DGP C-2 True -6.53 -543 -321 -247 -1.74 -135 -1.10 -0.88 -0.67 -0.50 -0.27 042 1.11 275 342
Posterior Mean -6.31 -521 -3.11 -236 -1.69 -132 -1.06 -0.85 -0.67 -0.50 -0.27 0.29 1.13 278 3.59
5% -6.97 -5.67 -329 -248 -1.76 -139 -1.12 -092 -0.74 -0.56 -0.36 0.00 091 245 3.11

95% -5.69 478 -292 -224 -161 -125 -1.00 -0.79 -0.62 -043 0.00 0.57 131 3.17 4.23
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Table C.3: Simulations with Continuous Distributions — True and Estimated Percentiles of Skill Distribution from Hierarchical Normal

Results from simulations in which alphas (expressed as annualized percentages) are generated from continuous-distribution data generating processes (DGPs) and are
estimated using the hierarchical normal model. In Panel A we present results for alphas simulated from a normal distribution, and in Panel B we present results for
alphas simulated from a negatively-skewed and fat-tailed distribution. Specifically, in Panel A, we present results for DGP C-1, i.e., a ~ far ( | U, 02), with g = =2.5
and o2 = 4. In Panel B, we present results for DGP C-2,i.e.,a ~ 2™V fN + 7= f~ + zt f+, with z"V = 0.10, 7~ = 0.80, z+ = 0.10, fV (a) = fn («]0,0.1),
(@) = fin (al10.1,0.5) fora < 0,and f* (&) = finn (J2]10.1,0.5) for @ > 0. For each DGP, we report the true percentiles of the alpha distribution and
their posterior mean and 90% HPDI estimated using the hierarchical normal model. The 90% HPDI is the smallest interval such that the posterior probability that a
parameter lies in it is 0.90.

Percentiles

05th st sth qoth  pgth  3gth  4oth  59th  goth  7oth  goth ggth gsth ggth g9 5th

Panel A: Normal alphas

DGP C-1 True 756 -6.95 -570 -5.01 -4.15 -351 -2.99 -247 -196 -146 -0.80 0.11 076 196 2.57
Posterior Mean 760 -7.10 -573 -500 -4.12 -348 294 243 -1.92 -138 -0.75 0.14 087 223 273

5% 775 724 -584 -5.10 -420 -3.56 -3.02 -2.51 -2.00 -146 -0.83 004 0.74 2.07 2.56

95% 743 -695 -562 -490 -4.04 -341 -2.87 -237 -1.86 -131 -0.67 023 097 238 2.89

Panel B: Negatively skewed and fat-tailed alphas

DGP C-2 True -6.53 -543 -321 -247 -1.74 -135 -1.10 -0.88 -0.67 -0.50 -0.27 042 1.11 275 342
Posterior Mean -448 -4.14 -320 -271 -2.10 -1.67 -130 -095 -0.60 -0.23 0.20 0.81 130 224 2.58
5% -4.63 -427 -331 -279 -217 -1.73 -135 -1.01 -0.66 -029 0.14 0.73 122 213 246

95% -435 -4.02 -3.11 -2.62 -2.04 -161 -124 -0.89 -0.55 -0.17 027 0.89 140 236 2.71




C.3 Summary statistics

Here, we present summary information for the funds in the two samples of actively managed open-end US equity
funds that we use in our analyses in Sections 5 through 8 of the paper: the baseline sample of 3,497 funds and

the restricted sample with reliable investment objective data for 1,865 funds.

Table C.4: Summary Statistics of Fund Characteristics

Summary statistics of fund characteristics for the two samples of actively managed open-end US equity funds used in the
empirical analyses in Sections 5 through 8 of the paper. In Panel A, we present summary statistics for the baseline sample of
3,497 funds, and in Panel B for the restricted sample of 1,865 funds with reliable investment objective information; both samples
span the period January 1975 through December 2011. Fund age is the number of years since the fund’s establishment. Total
net asset value (TNAV) is measured in millions of dollars. Expense ratio is defined as total annual management, administrative,
and 12b-1 fees and expenses divided by year-end TNAYV, and is expressed as a percentage. Turnover ratio is defined as the
minimum of aggregate purchases and sales of securities divided by the average TNAV over the calendar year, and is expressed
as a percentage. Fund inflows are defined as the net fund flows into the mutual fund over the calendar year, divided by the
TNAV at the end of the previous calendar year, and they are expressed as a percentage; negative values indicate net outflows.
The summary statistics reported are calculated across all fund-months in each sample.

Panel A: Baseline sample

Percentiles
Mean  Std.Dev. 5th 10th 25t s50th  75th  goth  g5th
Fund age 12.56 13.20 1 2 4 8 16 30 42
Total net asset value 942 3,992 4 10 37 143 551 1,747 3,634
Expense ratio 1.31% 1.00% 027% 0.66% 095% 1.24% 158% 197% 2.24%
Turnover ratio 96% 161% 10% 17% 34% 66% 116% 183% 249%
Fund inflows 46% 159% -37% —-27% —14% 1.4% 33% 124%  273%

Panel B: Restricted sample

Percentiles
Mean Std.Dev. 5th 10th 25t s5oth  75th  goth  g5th
Fund age 15.25 14.26 1 2 5 11 20 35 47
Total net asset value 1,245 4,804 7 14 53 202 765 2,403 4,928
Expense ratio 1.29% 096% 0.12% 0.65% 094% 1.22% 1.54% 195% 2.21%
Turnover ratio 88% 109% 10% 17% 34% 66% 113% 177% 237%
Fund inflows 37% 142% —-36% —27% —14% —0.5% 27% 101% 217%

Table C.5: Assignment of Funds to Investment Strategies

The number and fraction of funds allocated to each investment objective — Growth & Income, Growth, Aggressive Growth —
in the restricted sample of 1,865 funds with reliable investment objective information from the Thomson database.

Investment Objective # of Funds %age of Funds

Growth & Income 405 21.7%
Growth 1,230 66.0%
Aggressive Growth 230 12.3%
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C.4 Fund fees

Here, we present a plot of the empirical density of annual fund fees and expenses, expressed as a percent
of total net asset value. This empirical density is constructed from the average (across the lifetime
of each fund) annual fees and expenses for the 3,497 funds in our sample. Fees and expenses are
reported annually in the CRSP Survivorship-Bias-Free US Mutual Fund Database, and they include
annual management, administrative, and 12b-1 fees, and expenses.

The empirical density of fees and expenses shown in Figure C.2 has a mode at 0.95%. The mean,

median, and standard deviation of fees and expenses are 1.16%, 1.09%, and 0.68%, respectively.

1

0.8 1
0.6 1
04 1
0.2 :
0 L L
0% 1% 2% 3% 4% 5%
Fund Fees

Figure C.2: Plot of the empirical density of annual fund fees and expenses (expressed as a percent of total net
asset value) across 3,497 funds.
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C.5 The distribution of skill

In this section, we present some additional figures and tables regarding the estimation of the baseline
model presented in Section 2 of the paper using returns net of expenses for 3,497 funds. These results
supplement those presented in Section 5 of the paper.

First, we present results on the posterior distributions of the population mean and standard deviation
of alpha and the factor loadings (in Table C.6), and of the population correlations between factor loadings
(in Table C.7). We present these results conditional on K~ = 2, K™ = 1, rather than presenting tables
for each of the 16 possible models.

Table C.6: Population Mean and Standard Deviation of Alpha and Factor Loadings

Results on the posterior distributions of the population mean and standard deviation of annualized alpha (expressed
as a percent) and the factor loadings, estimated using our baseline model presented in Section 2 with returns net
of expenses, conditional on the model with the highest posterior probability, i.e., K~ = 2 and K+ = 1. The 95%
HPDI is the smallest interval such that the posterior probability that a parameter lies in it is 0.95. NSE stands
for autocorrelation-adjusted numerical standard errors for the posterior mean estimate of each parameter. The
population mean and variance of alpha for the zero-alpha funds is constrained to equal zero.

Means Standard Deviations

Mean Median Std.Dev. 95% HPDI NSE Mean Median Std.Dev. 95% HPDI = NSE

afl 0 0 0 [0 , 0o o0 0 0 0 0 , 0 0

a; 111 -1.11 0.16 [-1.39,-0.75]  0.01 0.66 0.64 0.19  [0.36,1.16]  0.01
a; 211 -1.50 1.68 [-7.39,-0.93]  0.07 3.04 2.06 3.05 [0.81,9.90]  0.08
at 1.04  1.00 030 [054 , 1.77] 0.02 1.29 1.22 037  [0.77,2.18]  0.02

Bu 0.95 0.95 0.00 [0.94 , 0.96] 0.00 0.21 0.21 0.00  [0.21,0.22] 0.00
Bsms 0.19 0.19 0.01  [0.18 , 0.20] 0.00 0.31 0.31 0.00  [0.30,0.31] 0.00
By,  0.02 0.02 0.01 [0.01 , 0.03] 0.00 0.34 0.34 0.00  [0.33,0.35] 0.00
0.01 0.01 0.00 [0.01 , 0.01] 0.00 0.10 0.10 0.00  [0.10,0.11] 0.00

Table C.7: Population Correlation Matrix

Means and standard deviations (in parentheses) of the posteriors of population correlations between the factor
loadings, for our baseline model presented in Section 2 with returns net of expenses.

BSMB ﬁHML ’@UMD

By 0.30 —0.47 0.11
(0.01) (0.01) (0.01)

Beus —0.12 0.18
(0.01) (0.01)

B —0.44
(0.01)
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As explained in Section 2.4 of the paper, to estimate our model we need to derive the joint posterior
distribution of the model parameters conditional on the data. Since this joint posterior cannot be calcu-
lated analytically, we obtain information about it by drawing from it using a Markov chain Monte Carlo
(MCMC) algorithm. Section 2.4 of the paper and Section B of the paper’s appendix provide details
about the MCMC algorithm we employ.

Using this algorithm, we make 5 million draws from which we discard the first 10% as burn-in and
retain every 50t after that to mitigate serial correlation. These draws form a Markov chain with stationary
distribution equal to the joint posterior. In Figure C.3, we present trace plots (plots of the retained draws
against the iteration number) of the proportions of funds with zero, negative, and positive alpha. In Figure
C.4, we present trace plots of the population means and variances of the distributions of alpha for negative-
and positive-alpha funds, and of the factor loadings, conditional on the highest-posterior-probability
model, i.e., K~ =2, KT = 1. These plots indicate no convergence problems.

We note that, in mixture models, the posterior distribution of parameters is invariant to permutations
of the components’ labels. As a result, inference regarding parameters that are not invariant to component
relabeling in the MCMC draws is problematic. We circumvent this issue in two ways. First, we focus
on inferences that are invariant to label switching, i.e., inference on: the numbers of components K ~,

O 7=, xt; the population mean x4 and variance Vj of the loadings;

K™; the population proportions 7
the population shape x;, and scale A; of the error distribution; the individual-level alpha «;, loadings f;,
and error precisions /;; the individual-level latent allocations to groups eio, 21 <k<K- e; " >, l<k<K+ e;’r i
and the density of alpha and the loadings. Second, to conduct inferences that are not invariant to label
switching, i.e., on component-specific probabilities {nkq } and distribution parameters {(,uz’k, V(Zk)},
we retrospectively relabel components in the MCMC draws so the estimated marginal posteriors of
parameters of interest are close to unimodality (see Stephens, 1997). This achieves a unique labeling

throughout the draws, so we obtain point estimates through averaging over the draws.! We see in Figure

C.4 that we have successfully removed the label-switching behavior from the means and variances.

Iwe do not impose artificial identifiability restrictions through the priors, because they do not guarantee a unique labeling
and can produce biased estimates (see Celeux, 1998). Also, see Jasra, Holmes and Stephens (2005) for a review of the various
methods that have been proposed to solve the label switching problem.
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of zero-alpha funds

Proportion 7t of positive-alpha funds
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Figure C.3: Trace plots of the MCMC draws for the population proportions of zero-alpha funds (in the top panel,
using black dots), negative-alpha funds (in the middle panel, using red dots), and positive-alpha funds (in the
bottom panel, using blue dots).
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Figure C.4: Trace plots of the MCMC draws for the population means (purple dots toward the top of each panel,
with values associated with the left vertical axes) and the population variances (green dots toward the bottom of
each panel, with values associated with the right vertical axes) of alpha and the factor loadings, conditional on
the model with the highest posterior probability, i.e., K~ =2, K™ = 1. The mean and variance of alpha are those
of the underlying normal distribution.
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C.6 Robust skewness, tail weight, and distance for standard distributions

In this section, we present robust quantile-based measures of skewness and tail weight for various
well-known distributions, to provide context for the measures we calculate for the alpha distribution we
estimate in Section 5 of the paper. We also present distance measures between the standard normal and
various well-known distributions, again to provide context for the distance we calculate between the alpha
distribution estimated from our model and from the hierarchical normal model in Section 5 of the paper.

The robust measure of skewness for our estimated alpha distribution is —0.20, its left tail weight
is 0.34, and its right tail weight is 0.27 (all quoted in excess of the values corresponding to the normal;
see Table 5 in the paper). In Table C.8, we see that the robust skewness is similar (in absolute value)
to that of a y? distribution that has between 30 and 50 degrees of freedom, at 0.22 and 0.17 respectively,
and the left and right tail weight measures are similar to those of a ¢ (2) and a 7 (3) distribution, at 0.36
and 0.28 respectively.

The Hellinger distance between our estimated alpha distribution and the one estimated from the normal
model is H> = 0.11 (see Table 6 in the paper). As we can see in Table 5, this is close to i) the Hellinger
distance (H? = 0.11) between two normals that have the same mean but one has twice the standard devia-
tion of the other, ii) the Hellinger distance (H?> = 0.08) between the standard normal A/ (0, 1) and a x> (3)
distribution that is scaled to have the same mean and variance as the standard normal, and iii) the Hellinger
distance (H? = 0.11) between the standard normal N\ (0, 1) and the ¢ (1) distribution. The Wasserstein
distance between our estimated distribution and the one estimated from the normal model is W = 0.22
(see Table 6 in the paper). From 5, we can also see that this distance is close to i) the Wasserstein distance
(W = 0.19) between a standard normal and a normal that has the same mean but 25% smaller/greater
standard deviation, ii) the Wasserstein distance (W = 0.21) between the standard normal A (0, 1) and
a y2 (4) distribution that is scaled to have the same mean and variance as the standard normal, and iii)

the Wasserstein distance (W = 0.25) between the standard normal N (0, 1) and the ¢ (3) distribution.



Table C.8: Robust Measures of Skewness and Tail Weight for the normal, y2, and ¢ distributions

Robust quantile-based measures of skewness and tail weight that rely on 99% of the range of each
distribution, for the normal distribution (in Panel A), and for the 2 (in Panel B) and ¢ distributions
(in Panel C) with various degrees of freedom. The measure of skewness is as in Groeneveld and
Meeden (1984) — § := [20-p)+2(»)-200.5)]/[0(1-p)-0(p)] — and the measures of left and right tail
weight are as in Brys, Hubert, and Struyf (2006) — LTW := —[Q(IE")+Q(§)—2Q(0<25)]/[Q(“TP)_Q(g)] and
RTW := [Q(#)JFQ(‘—%)—ZQ(°~75)]/[Q(%)—Q(l—%)] — where Q(x) is the x" quantile of the distribution,
and we use p=0.005 and ¢ =0.995. The measures are reported as deviations from the corresponding
values for the normal distribution (0 for the skewness and 0.52 for the left and right tail weight measures).

Panel A: V' (i, %) distribution

Quantile Left Right
Skewness Tail Weight Tail Weight
&) (LTW) (RTW)
Yu,o? 0 0 0

Panel B: y2 (k) distributions

Quantile Left Right
Skewness Tail Weight Tail Weight
() (LTW) (RTW)
k=3 0.64 —0.51 0.19
k=4 0.57 —0.41 0.17
k=5 0.52 —0.34 0.16
k=10 0.37 —0.21 0.12
k=20 0.27 —0.13 0.09
k=30 0.22 —0.10 0.08
k=50 0.17 —0.08 0.06

Panel C: ¢ (k) distributions

Quantile Left Right
Skewness Tail Weight Tail Weight
(S) (LTW) (RTW)
k=1 0 0.46 0.46
k=2 0 0.36 0.36
k=3 0 0.28 0.28
k=4 0 0.22 0.22
k=5 0 0.18 0.18
k=10 0 0.09 0.09
k=50 0 0.02 0.02
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Table C.9: Measures of Distance Between the Standard Normal and Other Distributions

Distance measures between the standard normal distribution and various normal, ){2, and ¢ distributions.
The Hellinger distance between densities fx, fy is H> := 1 — [ /fx (5) fvr (s)ds, and takes values in
[0, 1]. The Wasserstein distance between densities fx, fy is W :=infy,, E[||X — Y] where fyy is
any joint density with marginals fx, fy, and takes values in [0, +00). For the Wasserstein distance, we
present values that rely on 99% of the range of the distribution, i.e., we exclude the extreme tails to
make the distance measure robust. In Panel A, we present the distances between N (0, 1) and normal
distributions with the same mean but different standard deviation, as indicated in each row of the panel.
In Panel B, we present the distances between N (0, 1) and y? distributions with various degrees of
freedom as indicated in each row of the panel; these distributions are scaled to have the same mean (0)
and variance (1) as the standard normal. In Panel C, we present the distances between A (0, 1) and ¢
distributions with various degrees of freedom as indicated in each row of the panel.

Panel A: Distance between A/ (0, 1) and 6 - NV (0, 1) distributions

Hellinger Wasserstein
Distance Distance
(H?) (W)
o =0.25 0.31 0.58
o =0.50 0.11 0.39
o =0.75 0.02 0.19
o =125 0.02 0.19
o =1.50 0.04 0.39
oc=1.75 0.07 0.58
o =2.00 0.11 0.78

Panel B: Distance between A (0, 1) and [x*(*)—k]//2k distributions

Hellinger Wasserstein
Distance Distance
(H?) (W)
k=3 0.08 0.24
k=4 0.06 0.21
k=5 0.05 0.19
k=10 0.02 0.13
k=20 0.01 0.09
k=30 0.01 0.08
k=50 0.00 0.06

Panel C: Distance between N (0, 1) and ¢ (k) distributions

Hellinger Wasserstein
Distance Distance
(H?) W)
k=1 0.11 1.89
k=2 0.05 0.45
k=3 0.03 0.25
k=4 0.02 0.17
k=5 0.01 0.13
k=10 0.00 0.06
k=50 0.00 0.01
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C.7 Portfolio performance

In this section, we present additional results regarding the out-of-sample performance of portfolios that
select top-performing funds using i) the FDR methodology, ii) a hierarchical model in which fund alphas
are drawn from one normal, iii) a hierarchical model in which fund alphas are drawn from two normals,
and iv) our estimation methodology.

Our baseline portfolio formation rule described in detail in Section 6.1 of the paper is the following:
At the beginning of each month in the period 1980-2011, we use the preceding 60 months of fund returns
to estimate the 4-factor model using each methodology, and we form and hold until the end of the month
a portfolio of funds with high estimated probability of having a positive alpha; if all funds have a low
probability of having a positive alpha, we select funds whose posterior mean alpha (for the Bayesian
methodologies) or OLS ¢-statistic (for the FDR methodology) is in the top 1% among all funds in the
data set for the preceding 5 years.

In Table C.10, we present results on portfolio performance under alternative portfolio formation
rules: portfolios formed using a 36-month (instead of a 60-month) rolling estimation window, portfolios
that are left empty and portfolios that keep the top 2% (instead of the top 1%) of funds in months in
which all funds have a low probability of having a positive alpha, and portfolios that always keep the
top 1% of funds sorted by their posterior mean alpha. In particular, for each portfolio we construct, we
use its monthly portfolio returns for the period 1980-2011 to estimate its annualized OLS 4-factor alpha,
a, and the associated a t-statistic and residual standard deviation, its information ratio, the mean and
standard deviation of its return in excess of the risk-free return, and its Sharpe ratio. We see that, as
with our baseline portfolio formation rule used in Section 6.1 in the paper, for portfolios constructed
using these alternative formation rules, those based on our methodology yield higher performance than
those based on the other methodologies. This is true not only in terms of estimated alpha, but also in
terms of the information ratio and even in terms of the Sharpe ratio. The exception to this finding is
that the conservative portfolio based on our methodology yields a lower Sharpe ratio than those based
on the other methodologies (see Panel B of the table). However, we note that, by construction, the
conservative portfolios are not active in all months, and indeed conservative portfolios based on different

methodologies are active in different months, therefore their performance is not directly comparable.
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Furthermore, our methodology estimates alpha, therefore it is not surprising that its advantage for the
Sharpe ratio is smaller than it is for the estimated alpha or for the information ratio.

In Table C.11, we present results on portfolio performance — using the measures described above —
for each of the two halves of our sample period (1980-1995 and 1995-2011). We find that our portfolio
exhibits superior performance in both subperiods.

In Table C.12, we present results on the performance of quantile-based portfolios. That is, at the
beginning of each month in the period 1980-2011, we use the preceding 60 months of fund returns to
estimate the 4-factor model using each methodology — the hierarchical model in which fund alphas
are drawn from one normal or from two normals, and our methodology — then we sort funds into ten
quantiles based on the posterior mean alpha, and we hold these quantile-based portfolios until the end
of the month. As before, for each portfolio we construct, we use its monthly portfolio returns for the
period 1980-2011 to estimate its annualized OLS 4-factor alpha, &, and the associated & ¢-statistic and
residual standard deviation, its information ratio, the mean and standard deviation of its return in excess
of the risk-free return, and its Sharpe ratio. We see that the slope of returns going from the bottom
quantile to the top quantile is steeper for the portfolios constructed using our methodology than for
those constructed using the alternatives. In particular, as we see in the column labeled ‘Q10—Q1’, the
portfolio that buys the funds in the top quantile and sells the funds in the bottom quantile has @ = 3.23%
per year for the hierarchical model with one normal, & = 3.61% for the hierarchical model with two
normals, and & = 4.29% for our methodology. The difference in @ between the portfolio constructed
using our methodology and the one constructed using the hierarchical model with one normal (two
normals) is 1.06% (0.68%) and is statistically significant at the 1% level, with a z-statistic of 4.54 (3.59).
These results show that our methodology can better identify funds at the tails (both the right and the
left tail) of the skill distribution, which is consistent with our theoretical argument that our more flexible

semi-parametric model can better capture the tails of the distribution.
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Table C.10: Out-of-sample Portfolio Performance — Alternative Portfolio Construction Rules

Out-of-sample performance measures for portfolios that use alternative portfolio construction rules to select funds using the FDR methodology,
hierarchical models in which fund as are drawn from one normal or from two normals, and our estimation methodology. At the beginning of each
month in the period 1980-2011, we use the preceding 36 or 60 months of fund returns to estimate the 4-factor model using each methodology, and
we form and hold until the end of the month equal-weighted portfolios of funds that are estimated to have high performance. In Panels A and B,
we construct portfolios using 60-month rolling estimation windows, and we select funds with high estimated probability of having a positive a.
During months in which all funds have a low probability of having a positive a, in Panel A we select funds whose posterior mean a or OLS «a
t-statistic is in the top 2% among all funds in the ranking period (the ‘aggressive’ portfolio), while in Panel B, we leave the portfolio empty (the
‘conservative’ portfolio). In Panel C, we present results on the aggressive portfolio constructed using 36-month rolling estimation periods and
keeping the top 1% instead of the top 2% during months in which all funds have a low probability of having a positive a. In Panel D, we use a
60-month rolling estimation window, and in all months we select funds whose posterior mean a is in the top 1% among all funds in the ranking
period. For each portfolio we construct, we use its monthly returns from 1980 through 2011 to estimate its annualized OLS 4-factor alpha & and
residual standard deviation 6, (both expressed as percents), & ¢-statistic, Information Ratio (& /6,), mean and standard deviation (both expressed as
percents) of its return in excess of the risk-free return, and its Sharpe Ratio (mean/std. dev. of excess return).

Panel A: Aggressive Portfolio with top 2% Panel B: Conservative Portfolio
FDR 1 Normal 2 Normals Our Model FDR 1 Normal 2 Normals Our Model
a 1.63 1.62 1.35 2.38 a 1.86 2.01 1.68 2.84
a t-statistic 2.13 1.87 1.55 3.27 O t-statistic 2.22 2.10 1.77 3.14
0 4.14 4.42 4.60 3.93 0, 3.27 4.58 4.75 3.80
Information Ratio 0.39 0.36 0.29 0.61 Information Ratio 0.57 0.44 0.35 0.75
Mean Return 7.27 7.42 7.25 8.36 Mean Return 9.75 7.79 7.83 7.65
Std. dev. Return 16.69 13.64 13.81 15.00 Std. dev. Return 15.80 13.95 14.19 16.30
Sharpe Ratio 0.44 0.54 0.53 0.56 Sharpe Ratio 0.62 0.56 0.55 0.47
Panel C: Aggressive Portfolio with 36-month window Panel D: Alpha-sorted Portfolio
FDR 1 Normal 2 Normals Our Model 1 Normal 2 Normals Our Model
a 1.24 1.36 1.86 2.10 a 1.45 1.69 2.35
a t-statistic 1.58 1.68 1.89 2.02 0. t-statistic 2.00 2.19 2.87
0 4.22 4.34 6.19 6.41 0 3.85 4.18 4.59
Information Ratio 0.29 0.31 0.30 0.33 Information Ratio 0.38 0.40 0.51
Mean Return 7.49 7.06 8.17 9.07 Mean Return 7.19 7.62 8.55
Std. dev. Return 17.05 14.57 16.46 17.34 Std. dev. Return 14.61 14.93 15.78

Sharpe Ratio 0.44 0.48 0.50 0.52 Sharpe Ratio 0.49 0.51 0.54
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Table C.11: Out-of-sample Portfolio Performance — Sub-samples

Out-of-sample performance measures for two non-overlapping sub-samples, for portfolios that select funds using the FDR methodology, hierarchical
models in which fund as are drawn from one normal or from two normals, and our estimation methodology. At the beginning of each month in the
period 1980-2011, we use the preceding 60 months of fund returns to estimate the 4-factor model using each methodology, and we form and hold
until the end of the month equal-weighted portfolios of funds that are estimated to have high probability of having a positive o (see Section 6.1 of
the paper for more details). During months in which all funds have a low probability of having a positive a, we select funds whose posterior mean
o (for the three hierarchical methodologies) or OLS z-statistic (for the FDR methodology) is in the top 1% among all funds in the data set for the
preceding 60 months. For each portfolio we construct, we use its monthly portfolio returns from 1980 to 1995 (in Panel A) and from 1995 to
2011 (in Panel B) to estimate its annualized OLS 4-factor alpha & and residual standard deviation 6, (both expressed as percents), o 7-statistic,
Information Ratio (a/6;), mean and standard deviation (both expressed as percents) of its return in excess of the risk-free return, and its Sharpe
Ratio (mean/std. dev. of excess return).

Panel A: 1°“half Sub-sample Panel B: 2"-half Sub-sample
FDR 1 Normal 2 Normals Our Model FDR 1 Normal 2 Normals Our Model
a 2.45 2.22 1.80 3.36 a 1.54 1.92 1.62 2.24
a t-statistic 2.73 2.74 2.22 3.51 0. t-statistic 1.27 1.70 1.33 2.28
0 3.05 3.03 3.07 3.73 0, 4.99 4.20 4.60 3.74
Information Ratio 0.80 0.73 0.59 0.90 Information Ratio 0.31 0.46 0.35 0.60
Mean Return 8.52 8.49 8.07 10.59 Mean Return 7.04 6.51 6.47 7.21
Std. dev. Return 15.90 14.83 14.91 15.47 Std. dev. Return 17.48 12.41 12.82 14.46

Sharpe Ratio 0.54 0.57 0.54 0.68 Sharpe Ratio 0.40 0.52 0.50 0.50




Table C.12: Out-of-sample Portfolio Performance — Quantile-based Portfolios

Out-of-sample performance measures for portfolios that select funds using hierarchical models in which fund as are drawn from
one normal (in Panel A) or from two normals (in Panel B), and our estimation methodology (in Panel C). At the beginning of
each month in the period 1980-2011, we use the preceding 60 months of fund returns to estimate the 4-factor model using each
methodology, we sort funds into ten quantiles (Q1 through Q10) based on the posterior mean «, and we hold these quantile-based
portfolios until the end of the month. We also form the portfolio (labeled ‘Q10—Q1’) which buys the funds belonging to the top
quantile and sells the funds belonging to the bottom quantile. For each portfolio, we use its monthly returns from 1980 through
2011 to estimate its annualized OLS 4-factor alpha & and residual standard deviation o, (both expressed as percents), & ¢-statistic,
Information Ratio (@ /4.), mean and standard deviation (both expressed as percents) of its return in excess of the risk-free return,
and its Sharpe Ratio (mean/std. dev. of excess return).

Panel A: 1 Normal

Quantiles
Q1 Q2 Q3 Q4 Qs Qo Q7 Q8 Q9 Q10 Q10—-Q1
a —2.806 —2.14 -094 -086 -—-1.18 —-1.19 —-094 026 0.30 0.37 3.23
0. t-statistic —-6.02 —-547 -2.02 —-157 -1.87 —-1.86 —1.86 0.52 0.60 0.76 5.94
O 248 220 245 294 330 3.17 261 250  2.62 2.69 2.84
Information Ratio —1.15 -0.97 -0.38 —-0.29 -0.36 —-0.38 -0.36 0.10 0.11 0.14 1.14
Mean Return 333 418 528 568 525 533 564 660 6.46 6.42 3.10
Std dev Return 1496 1532 1550 1571 15.69 1577 16.19 1624 1626 1529 2.91
Sharpe Ratio 022 027 034 036 033 034 035 041 0.40 0.42 1.06

Panel B: 2 Normals

Quantiles
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q10-Q1
a -3.09 -1.84 -1.02 -1.19 —-1.00 —1.23 —-049 -0.09 0.24 0.52 3.61
0. t-statistic —6.35 —4.63 —-224 =229 —-1.64 -2.09 —-096 -0.17 049 1.02 6.42
O 256 222 239 280 315 293 273 249 261 2.81 3.01
Information Ratio —1.21 -0.83 —-043 -043 -0.32 -042 -0.18 -0.03 0.09 0.19 1.20
Mean Return 314 445 522 529 547 526 6.07 627 642 6.56 3.42
Std dev Return 15.10 1531 1540 15.60 1559 1585 16.16 16.24 16.24 15.37 3.10
Sharpe Ratio 0.21 029 034 034 035 033 038 039 040 0.43 1.10

Panel C: Our Model

Quantiles
Q1 Q2 Q3 Q4 Qs Qo6 Q7 Q8 Q9 Q10 Q10-Q1
a —348 —-1.62 —-0.65 —-150 -0.85 -—-1.06 —0.78 —-0.06 —0.04 0.80 4.29
0. t-statistic -7.17 -390 -1.22 -285 -1.63 —-1.79 —-1.66 —-0.11 -0.07 1.48 6.89
O 263 223 282 279 268 284 246 2.63 2.68 3.05 341
Information Ratio —1.32 -0.72 -0.23 -0.54 -0.32 -0.37 -0.32 -0.02 -0.01 0.26 1.26
Mean Return 283 468 569 504 548 537 583 625 6.19 6.77 3.96
Std dev Return 1536 1542 1550 1553 1543 15.61 16.01 16.05 16.20 15.73 3.53
Sharpe Ratio 0.18 030 037 032 036 034 036 039 0.38 0.43 1.12
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Observing Tables C.10 and C.11 above, it is interesting that the performance of the portfolio constructed using the
hierarchical model with two normals is in some cases worse than that of the portfolio constructed using the hierarchical
model with one normal. This may be due to noise, since funds are allocated to portfolios using only a few years of data,
but it could also be explained as follows. The hierarchical model with two normals attempts to estimate the fat tails of the
alpha distribution and is therefore more aggressive about placing funds in the right tail, but due to its limited flexibility
it may be unable to do so accurately. This intuition is consistent with the evidence in Figure C.5, which presents repre-
sentative Quantile-Quantile plots of the posterior alphas from the hierarchical model with one normal (in Panel a) and
with two normals (in Panel ) versus the posterior alphas from our model, for one of the estimation periods used in the
construction of the portfolios. We see that, while the model with two normals does a better job than the model with one
normal in estimating the largest alpha at more than 3% annualized, it also overestimates (relative to our model) a number

of large alphas, and therefore would over-aggressively include them in the portfolio of the best-performing funds.
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Figure C.5: Representative Quantile-Quantile plots of posterior mean alphas estimated from the hierarchical model with one
normal (in Panel a) and with two normals (in Panel b) versus posterior mean alphas estimated using our methodology, for one
of the 60-month periods used in the rolling estimation employed to construct the portfolios in Section 6.1 of the paper. The blue
cross marks plot the quantiles, and the solid red line plots the 45° line.
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C.8 Posterior predictive densities

In this section, we explain in detail how we make draws from the posterior predictive densities of
benchmark portfolio returns and of fund returns. These draws are necessary for our calculation of

r,F) is

optimal portfolios in Section 6.2 of the paper. The posterior predictive density p(r,»,TH,FTH

f P(Vi,T+1,FT+1, Xisxr|1s F ) dyiyxr, where y; and yr denote the parameters of the distribution of r; and

F, respectively, and where r and F collect all fund and benchmark portfolio returns, respectively. Using

simple rules of probability, we can rewrite p(rl-’TH, Froa, i, xr|1, F ) as p(r,-,TH, FT+1‘ Xis ){F) times
p (i, xrlr, F) and p(rira, Fral| xi, xr) as p(rira | Frsa, xi) p(Fral xr), while p (xi, xrlr, F) is

proportional to p (y; |r, F) p (xr |F). That is,

p (ri7+1. Fr41|r, F) O</P(ri,T+1 \Frot, xi) P (Freil xp) p(xil o F) p (x| F)dxixy

Thus, to make draws from the posterior predictive density p(l",’,T_H, Fry|r,F ) we make draws from
p(xr|F) and p(y;|r,F), which we use to make draws from p (Fr.| yr) and subsequently from
p (ri,r+11Fri1, xi ). To make draws from p (x; |r, F), we work as in Section 2.4 of the paper, and to
make draws from p (ri,”l | Fraq, Xi) we use the linear factor model in Equation 1 of the paper. Below,
we describe how we make draws from p (yr |F) and from p ( Fryq| xr).

For the factor returns, we assume that they are i.i.d. normal, thatis F; |ur, Zr ~ N (ur, Zr), and

that the distribution parameters (i g, Xr) follow the conjugate Normal-inverse-Wishart prior given by

UF,2F HpKps Vi, Ap ~NIW (ﬁpa KrpsVEs AF), ie.,

1
luF‘ﬁFsﬁFa ZF ~ N(ﬁF’ }C_ZF)
~F

S e A~ W (e, AFY,

where u o KR Vps and A, are prior parameters. In particular, using the Jeffrey’s prior p (up,Xr)
k 1
|Z Fl_% (with kp the number of factors) and observing data F := {F,},TZI, the posterior of (u g, XF)

is Normal-inverse-Wishart u g, Xp |F ~NIW (,&p, T,T-1, TﬁlF), iLe.,

. 1
urlZp, o~ N(ﬂFaTEF)

SSUF o~ W (T —1, (TiF)_l) :
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where

1 T
ir = DR
t=1
1 T
e A A /
X = T (F,—ap) (F— fp)
=1
Thus, to generate m = 1, ..., M draws for the benchmark portfolio returns from the posterior predictive

density, we generate draw 2;’") from E;l | above, we use this to generate draw y(Fm) from pup|Xp, F

(m

above, and we use both to generate draw F\", from N (,u 8 Zl(pm)).

T+1
To generate m = 1,..., M draws for fund i’s returns from the posterior predictive density, first
we randomly pick m = 1,..., M draws from our MCMC draws for a;, f;, and h;, whose joint
distribution converges to their joint posterior distribution. Then, we generate m = 1,..., M draws

-1
gi("})H ~N (O, (hl(m)) ) Finally, we combine draws ai(m), ﬁi(m) , gl.(”}) 1 with draw F}’i)l for the bench-
mark portfolio returns whose generation is described above, and substitute them in the linear factor

/
model equation to calculate the draw ri(";)Jrl = a,-(m) + (F}r_?l) ,Bl-(m) + 8,.("}) 4l
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C.9 The distribution of skill by fund investment objective

In this section, we present additional results regarding the estimation of the K~ = 2, K™ = 1 model
separately for funds classified to each of the three investment objectives (Growth & Income, Growth,
and Aggressive Growth); see Section 7.1 of the paper for details. In particular, in Table C.13, we present
the percentiles of the estimated distributions of alpha and the factor loadings.

Table C.13: Percentiles of Estimated Distributions — By Investment Objective

Percentiles of the estimated population distributions of annualized alpha (expressed as a percent) and factor loadings,
estimated with returns net of expenses using the K~ = 2, K™ = 1 model separately for funds classified to the three
investment objective categories: Growth & Income (Panel A), Growth (Panel B), and Aggressive Growth (Panel
O).

Panel A: Growth & Income Objective

Percentiles
0.5th 15t sth qoth  29th  39th  4oth  59th  goth  79th  goth ggth ogs5th  ggth g9 sth

e -375 -3.15 204 -166 -134 -1.14 -096 -0.80 -0.63 -040 0.00 000 047 132 1.71
Bum 0.29 0.34 047 055 063 070 075 080 085 09 097 1.06 1.13 127 1.31
Bsmp 046 042 -030 -024 -0.17 -0.12 -0.07 -003 0.01 006 011 0.18 0.24 036 0.40
By, 034 029 -0.16 -0.09 -000 0.06 0.11 0.16 021 026 032 040 047 0.60 0.65
Buvwmp 925 023 -0.17 -0.14 -0.10 -0.07 -0.04 -002 0.00 002 005 009 0.12 018 0.21

Panel B: Growth Objective

Percentiles
0.5th 15t sth qoth  2oth  39th  4oth 59th  goth  79th  goth ggth ogs5th ggth g9 sth

e -490 -410 -2.56 -199 -145 -1.12 -0.87 -0.64 -040 000 0.00 0.10 048 228 3.62
Bu 0.53 0.58 069 075 083 0.8 093 097 102 106 1.11 119 125 136 1.40
Bsmg 058 -050 -029 -0.18 -005 004 013 020 028 036 045 059 0.69 090 0.98
By, 09 081 -0.56 -043 -027 -0.15 -006 003 012 022 034 050 0.63 0387 0.97
Buwmp 028 025 -0.18 -0.14 -0.08 -005 -002 001 004 007 011 0.16 020 028 0.31

Panel C: Aggressive Growth Objective

Percentiles
0.5th 18t sth qoth  poth  39th  4oth 59th  goth  79th  goth ggth ogs5th ggth g9 sth

e -17.81 -12.26 -435 -236 -096 -036 0.00 0.00 0.00 0.00 030 112 199 463 6.25
Bum 0.65 0.69 080 08 093 098 103 107 111 115 120 127 133 144 1.48
Bgms 028 -021 -002 008 020 029 037 043 050 058 067 079 089 1.07 1.14
By, -1112 -1.03  -079 -0.66 -050 -039 -029 -020 -0.11 -0.01 0.10 026 039 0.64 0.72

Bymp 030 -027 -017 -0.12 -006 -001 003 006 010 0.14 0.19 025 030 040 0.43
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C.10 The prevalence of short-term skill and its evolution

Here, we present additional tables pertaining to our analysis of short-term skill and its evolution over

time (see Section 7.2 of the paper) using returns net of expenses for 3,497 funds.

Table C.14 presents the evolution over time of the posterior means of the population proportions
of zero-, negative-, and positive-alpha funds, while Table C.15 presents the evolution over time of the
percentiles of the estimated distribution of alpha. Tables C.14 and C.15 correspond to Figures 9a and
9b of the paper, respectively.

Table C.14: Proportions of Fund Types — Short-term Skill

Evolution over time of posterior means of population proportions of zero-, negative-, and positive-alpha funds, in a
model with short-term skill. Posterior means are estimated at the end of each year using data from the preceding 60
months. All estimations use returns net of expenses in the K~ = 2, K™ = 1 model with two and one components
for the alpha distribution of negative-alpha and positive-alpha funds, respectively.

A - gt

1975 — 1979 029 0.58 0.13
1976 — 1980 040 029 032
1977 — 1981 0.29 042 0.29
1978 — 1982 0.37 022 041
1979 — 1983 049 0.15 0.36
1980 — 1984 033 0.19 048
1981 — 1985 040 030 0.30
1982 — 1986 034 0.17 048
1983 — 1987 046 0.18 0.37
1984 — 1988 043 026 031
1985 — 1989 0.39 034 0.27
1986 — 1990 0.54 0.14 0.32
1987 — 1991 026 0.55 0.19
1988 — 1992 0.23 0.58 0.19
1989 — 1993 049 032 0.18
1990 — 1994 042 036 0.23
1991 — 1995 0.20 0.73 0.07
1992 — 1996 022 0.70 0.08
1993 — 1997 024 0.65 0.11
1994 — 1998 0.06 0.81 0.12
1995 — 1999 0.05 091 0.04
1996 — 2000 043 030 0.27
1997 — 2001 040 039 0.21
1998 — 2002 049 037 0.14
1999 — 2003 0.50 033 0.17
2000 — 2004 0.35 0.55 0.09
2001 — 2005 0.09 0.88 0.03
2002 — 2006 0.04 095 0.01
2003 — 2007 0.17 0.73 0.10
2004 — 2008 0.17 0.71 0.12
2005 — 2009 022 057 0.21
2006 — 2010 0.17 0.72 0.11
2007 — 2011 022 0.62 0.16
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Table C.15: Percentiles of Estimated Distribution of Alpha — Short-term Skill

Evolution over time of various percentiles of the estimated distribution of annualized alpha (expressed as a percent),
in a model with short-term skill. The distributions are estimated at the end of each year using data from the preceding
60 months. All estimations use returns net of expenses in the K~ = 2, KT = 1 model with two components for the
alpha distribution of negative-alpha funds and one component for that of positive-alpha funds.

Percentiles

Sth 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th

1975 -1979 -259 -2.07 -155 -122 -096 -0.70 0.00 0.00 0.00 0.92 1.81
1976 — 1980 -1.71 -1.17 -0.63 000 000 000 000 034 0.74 1.21 1.66
1977 - 1981 -2.07 -1.64 -1.18 -087 -049 0.00 0.00 0.00 1.40  2.29 3.07
1978 - 1982 -3.03 -1.86 -059 0.00 000 000 042 1.05 1.65  2.65 3.70
1979 — 1983 -3.17 -149 000 000 000 000 000 0.64 1.30 245 3.78
1980 — 1984 -397 -234 000 000 000 0.00 0.74 1.20 1.79 281 3.89
1981 — 1985 -250 -1.34 -049 000 000 000 000 0.00 1.05  2.08 3.17
1982 - 1986 -4.58 -2.14 0.00 0.00 0.00 000 096 1.37 1.83 254 3.25
1983 — 1987 -4.64 -243 000 000 000 000 0.00 1.20 1.83  2.68 3.47
1984 — 1988 -4.04 -2.12 -0.67 000 0.00 0.00 0.00 049 1.35 242 3.51
1985 -1989 -3.67 -2.10 -091 -032 000 000 000 0.00 1.24 235 3.39
1986 — 1990 -3.27 -124 0.00 0.00 000 000 000 042 1.08  2.03 3.05
1987 - 1991 -2.84 -18 -1.08 -0.68 -042 -020 0.00 0.00 0.00 1.73 2.76
1988 — 1992 -292 -1.84 -1.01 -0.62 -0.38 -0.20 0.00 0.00 0.00 1.45 2.50
1989 — 1993 -254 -147 -063 -0.18 000 000 000 0.00 0.00 1.36 2.44
1990 — 1994 -340 -2.02 -094 -039 000 000 0.00 0.00 045 1.42 2.40
1991 —1995 -375 -269 -176 -128 -095 -0.70 -048 -0.25 0.00 0.00 0.33
1992 - 1996 -393 -280 -1.84 -133 -098 -0.71 -046 0.00 0.00 0.00 0.31
1993 - 1997 -439 -331 -231 -1.75 -133 -098 -0.61 0.00 0.00 0.20 0.53
1994 — 1998 -429 -351 -273 -226 -191 -162 -135 -1.06 -0.61 0.00 0.00
1995 —-1999 -347 -3.05 -260 -232 -2.10 -191 -1.73 -1.54 -1.32 -0.88  0.00
1996 — 2000 -2.85 -2.04 -120 000 000 000 000 0.00 0.68 1.20 1.67
1997 — 2001 -3.74 -292 -205 ~-143 000 000 000 0.00 0.15 048 0.76
1998 — 2002 -3.16 -226 -137 -081 000 000 000 000 0.00 0.78 2.20
1999 - 2003 -236 -1.75 -1.10 -0.59 0.00 0.00 0.00 0.00 0.00 1.56 2.44
2000 — 2004 -3.19 -252 -1.85 -144 -1.10 -0.74 0.00 0.00 0.00 0.00 1.88
2001 — 2005 -5.01 -4.01 -3.04 -248 -2.08 -1.75 -146 -1.19 -0.88 0.00 0.00
2002 — 2006 -4.45 -359 -277 -230 -195 -1.68 -143 -121 -097 -0.68 0.00
2003 — 2007 -2.86 -238 -190 -1.59 -136 -1.15 -094 -0.65 0.00 0.00 2.25
2004 — 2008 -2.01 -1.74 -144 -125 -1.10 -095 -0.80 -0.54 0.00 1.13 1.85
2005 —2009 -2.59 -2.03 -148 -1.14 -0.88 -0.61 0.00 0.00 029 0.90 1.31
2006 — 2010 -2.64 -222 -180 -1.52 -131 ~-1.11 -091 -0.60 0.00 0.30 0.64
2007 -2011 -2.62 -221 -1.77 -149 -125 -1.02 -068 0.00 0.00 0.12 0.20
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C.11 Fund flow analysis

In this section, we present additional results on our analysis in Section 7.4 of the paper, for the relation
between fund flows and past fund performance as well as the relation between fund flows and subsequent
fund performance.

In Table C.16 (C.17), we present the average past (future) performance across all funds that belong to
each flow quintile for each 5-year non-overlapping period in our sample. These tables are similar, respec-
tively, to Panels A and B of Table 16, which presents results averaged across all 5-year non-overlapping
periods in our sample. They show the same effects as those shown in Table 16 and discussed in detail
in Section 7.4 of the paper.

In Table C.18, we analyze these effects in a regression framework. In Panel A of the table, we

examine the relation between fund flows and past performance using the specification
q — q
Fy =0+ alPerfg_iy_l + &5,

where Fy is the flow in year y averaged across all funds in flow quintile ¢, and Per]‘z_iy_l is the posterior
performance (alpha relative to the 4-factor model) estimated using our methodology over the previous 5
years (from y — 5 to y — 1) averaged across all funds in flow quintile g. In Panel B of the table, we

examine the relation between fund flows and future performance using the specification

Perfi i1 yys = Perfy_s oy = o+ BIF +ul,

where F is as above and the dependent variable is the difference between performance in the 5-year
period after and the 5-year period before year y, averaged across all funds in flow quintile g. To eliminate
the effect of time, performance measures in both specifications are de-meaned by subtracting the mean
performance across all funds operating contemporaneously.

The effects estimated from these regressions are consistent with those calculated from the quantile-
based analysis. For example, in Panel A of Table C.18, we see that an increase of 1% in the annualized
posterior mean of alpha in the 5-year period prior to flow measurement corresponds to an increase of
128% in the measured flows. In Panel B, we see that an increase of 100% in capital flows corresponds to
a decrease of 0.25% in the difference between the annualized posterior mean of alpha in the subsequent

and the preceding 5-year period.
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Table C.16: Fund Flows and Past Performance — Quantile Analysis

The relation between fund flows and past fund performance. At the end of each non-overlapping 5-year period from 1975 to 2010, we sort funds into
quintiles (Q1 through Q5) based on their flows (expressed as a percent of beginning-of-year total net asset value) in the subsequent year. In each 5-year
period, we measure fund performance using i) the posterior probability (expressed as a percent) of having a positive alpha, ii) the posterior probability
(expressed as a percent) of having a negative alpha, and iii) the posterior mean of alpha (expressed as an annualized percent), all estimated from our
model with 4-factors. For each period, we present average performance measures and average flows across all funds in each flow quintile. We also
present averages across all periods. In the columns labeled ‘Q5—Q1°, we report the difference between the top and the bottom flow quintile. */**/***
indicate significance of this difference at the 10%/5%/1% levels. In the columns labeled ‘N’, we write the number of funds used in the calculations for
each S-year period.

Panel A: Positive-a probability (as a %) Panel B: Negative-a probability (as a %)
Flow Quintiles Flow Quintiles
Period N Q1 Q2 Q3 Q4 Q5 Q5-0Q1 Q1 Q2 Q3 Q4 Q5 Q5-Q1
1975 — 1980 244 8.23 928 10.31 13.47 15.70 7.47 *** 67.33 6528 61.59 5824 55.54 —11.81**
1980 — 1985 266 40.53 45.67 46.90 48.73 60.93 20.40 *** 27.13 22.08 20.56 21.33 11.56 —15.57 ***
1985 — 1990 422 31.74 37.04 36.19 46.06 49.83 18.09 *** 2947 21.87 2124 17.20 15.63 —13.84 ***
1990 — 1995 679 13.58 1398 16.73 20.74 23.04 9.46 *** 59.03 58.38 52.39 47.90 46.52 —12.51 ***
1995 — 2000 1187 3.29 4.26 4.73 5.91 5.48 2.19 *** 89.43 8691 8536 82.43 83.88 —5.55 %
2000 — 2005 1332 8.59 9.03 11.02 12.28 14.01 5.42 % 53.44 51.10 45.69 43.58 41.78 —11.66***
2005 - 2010 1032 12.24 1398 14.78 18.83 19.23 6.99 *** 56.79 53.13 51.01 44.28 43.40 —13.39 ***
Average 16.88 19.04 20.08 23.69 26.89 10.01 *** 54.64 51.26 4829 44.99 42.62 —12.03 ***
Panel C: o (as a %/year) Panel D: Flows (as a %/year)
Flow Quintiles Flow Quintiles
Period N Q1 Q2 Q3 Q4 Q5 Q5-0Q1 Q1 Q2 Q3 Q4 Q5 Q5-Q1
1975 -1980 244 —-0.84 -0.72 -0.60 —-048 —-0.36 0.48 *** —3543 —=24.19 —19.68 —10.45 46.59 82.02 ***
1980 — 1985 266 —0.12 0.24 0.48 0.36 1.32 1.44 *** —-21.68 —-9.50 -—-2.04 10.46 85.10 106.78 ***
1985 - 1990 422 —0.24 0.00 0.24 0.72 0.60 0.84 *** —-20.56 —-8.34 —-2.32 6.69 39.05 59.61 ***
1990 - 1995 679 —-0.72 —-0.84 —-048 —-0.24 -0.24 0.48 *** —-30.25 —11.56 0.34 21.65 173.56 203.81 ***
1995 -2000 1187 —-1.92 —-1.80 —-1.80 —1.68 —1.68 0.24 *** —33.26 —1493 —-5.49 9.58 157.08 190.34 ***
2000 - 2005 1332 —-1.08 —-096 -0.72 -0.72 —-0.60 0.48 *** —37.19 —19.03 -—8.55 9.34 159.23 196.42 ***
2005 -2010 1032 —-0.84 —-0.72 -0.60 —-0.36 —-0.36 0.48 *** —30.65 —13.34 —4.03 8.77 154.76 185.41 ***

Average -0.82 -0.69 -050 -0.34 -0.19 0.63 —-30.03 —14.15 —6.46 825 116.38 146.41 ***
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Table C.17: Fund Flows and Future Performance — Quantile Analysis

The relation between fund flows and subsequent fund performance. At the beginning of each non-overlapping 5-year period from 1980 to 2010, we
sort funds into quintiles (Q1 through Q5) based on their flows (expressed as a percent of beginning-of-year total net asset value) in the previous year.
In each 5-year period, we measure fund performance using i) the posterior probability (expressed as a percent) of having a positive alpha, ii) the
posterior probability (expressed as a percent) of having a negative alpha, and iii) the posterior mean of alpha (expressed as an annualized percent), all
estimated from our model with 4-factors. For each period, we present average performance measures and average flows across all funds in each flow
quintile. We also present averages across all periods. In the columns labeled ‘Q5—Q1°, we report the difference between the top and the bottom flow
quintile. */**/*** indicate significance of this difference at the 10%/5%/1% levels. In the columns labeled ‘N’, we write the number of funds used in

the calculations for each 5-year period.

Panel A: Positive-a probability (as a %)

Flow Quintiles

Period N Q1 Q2 Q3 Q4 Q5 Q5-0Q1

1980 — 1985 243  45.12 4595 5123 5121 45.58 0.46
19851990 324  37.09 36.04 3745 4678 38.75 1.65
1990 - 1995 615  18.81 1453 16.19 18.06 1682  —2.01
1995 -2000 924  4.63 486 406 443 442  —021
2000 — 2005 1353  14.18 11.06 1050 928 859  —5.59%**
2005 -2010 1064 1674 15.04 1533 15.17 14.88  —1.86*
Average 2276 2125 2248 2416 21.51  —1.25%*

Panel C: o (as a %/year)

Flow Quintiles

Period N Q1 Q2 Q3 Q4 Q5 Q5-Q1

1980 — 1985 243 0.24 0.36 0.72 0.60 0.24 0.00
1985 -1990 324 0.24 0.12 —-0.12 0.72 0.36 0.12
1990 - 1995 615 —-048 -0.72 —-0.60 -0.48 —0.60 —-0.12
1995 -2000 924 -180 -1.80 -—-1.80 —-1.80 —1.80 0.00
2000 - 2005 1353 —-0.60 —-0.84 —-0.84 —-0.96 —1.08 —0.48 ***
2005 - 2010 1064 —-048 -0.60 -0.60 —-0.60 —0.72 —-0.24**

Average —-048 —-0.58 —-0.54 -0.42 -0.60 —0.12***

Panel B: Negative-o probability (as a %)

Flow Quintiles

Q1 Q2 Q3 Q4 Qs Q5-Q1
2452 2056 17.99 18.33 24.25 —0.27
2193 2256 23.38 16.32 22.38 0.45
51.87 58.13 53.89 51.90 54.54 2.67
8598 85.08 87.06 86.43 86.44 0.45
40.07 4694 47.56 50.10 53.34 13.27 ***
48.61 50.78 50.64 51.19 52.09 3.48*
4550 47.34 46.75 45.70 48.84 3.34 ***

Panel D: Flows (as a %/year)

Flow Quintiles

Q1 Q2 Q3 Q4 Q5 Q5-Q1

—26.21 —1945 —14.34 —-7.23 67.23 93.44 ***
—15.33 -3.23 249 12.68 111.89 127.22 ***
—-37.10 —15.87 —4.86 17.57 188.39 225.49 ***
—2643 —6.40 6.35 30.05 224.75 251.18 ***
—36.78 —13.18 1.02 3191 293.88 330.66 ***
—-26.56 —11.97 —-1.34 17.39 183.39 209.95 ***
—28.04 —12.67 —2.34 17.59 178.43 206.47 ***




Table C.18: Fund Flows and Fund Performance — Regression Analysis

Regression analysis of the relation between fund flows and past and future fund performance. In Panel A, we
present estimates from an OLS regression of annual fund flows on fund performance over the previous 5 years.
In Panel B, we present estimates of an OLS regression in which the explanatory variable is the annual fund
flow and the dependent variable is the difference between fund performance in the subsequent 5-year period and
fund performance in the previous 5-year period. Measures of fund flows and fund performance are averaged
across all funds that belong to the same flow quintile each year. In both panels, we present results from three
specifications: In specification (1), the performance measure is the posterior probability (expressed as a percent)
of having a positive alpha; in specification (2), it is the posterior probability (expressed as a percent) of having a
negative alpha; and in specification (3), it is the posterior mean of alpha (expressed as an annualized percent).
All performance measures are estimated from our model with 4 factors, and are de-meaned by subtracting the
mean performance across all funds operating contemporaneously. Fund flows are expressed as a percent of
beginning-of-year total net asset value; in Panel B, ‘Flows x 100’ means that the quoted coefficients correspond
to an increase of 100% in flows. ¢-statistics are reported below the coefficients. */**/*** indicate significance at
the 10%/5%/1% levels.

Panel A: Flows and past performance

ey 2) 3)
Intercept 19.23 ***  19.37 *** 19.26 ***

4.76 5.09 4.82
Positive-o. probability 7.60 ***

8.95
Negative-a probability —8.73 ***

—10.64
o 128.17 ***
9.30

Adj R? 0.34 0.43 0.36
Number of observations 155 155 155

Panel B: Flows and future performance

(D ) (3)

Intercept 1.22 *** —1.07 *** 0.05 ***
2.57 —3.04 2.70

Flows x 100 —3.96 *** 5.13 #**  —0.25 ***
—7.87 9.33 —8.27
Adj R? 0.33 0.40 0.35
Number of observations 130 130 130
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C.12 Prior sensitivity analysis

Here, we present some additional results for the prior sensitivity analysis discussed in Section 8.1 of the
paper.

First, we present more detailed results from the sensitivity analysis that replaces the symmetric D (1)
prior with the asymmetric D (1, 3, 3) prior which overweights component probability vectors with lower
values for the proportion of zero-alpha funds. In Table C.19, we present statistics for the posterior of the
population proportions of zero-, negative-, and positive-alpha funds, and in Table C.20 we present various
percentiles of the estimated distribution of annualized alpha.

Table C.19: Proportions of Fund Types — Sensitivity to Asymmetric Prior

Analysis of the sensitivity of the posterior distribution of the population proportions of zero-alpha, negative-alpha,
and positive-alpha funds, to an asymmetric D (1, 3, 3) prior over these population proportions. The 95% HPDI is the
smallest interval such that the posterior probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-
adjusted numerical standard errors for the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI  NSE
w0 0.07 0.05 0.06 [0.00,0.21] 0.00
T 0.80 0.80 0.05 [0.68,0.88] 0.00
7t 0.13 0.13 0.04 [0.07,0.21] 0.00

Table C.20: Percentiles of Estimated Skill Distribution — Sensitivity to Asymmetric Prior

Analysis of the sensitivity of the percentiles of the estimated population distribution of annualized alpha (expressed as
a percent) to an asymmetric D (1, 3, 3) prior over the proportions of zero-, negative-, and positive-alpha funds. We
report the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest
interval such that the posterior probability that a parameter lies in it is 0.90.

Percentiles
osh gt sthooqoth oth  3th 4oth  seth  goth  7th  goth  goth  gsth  ggth g9 sth

Posterior Mean  -6.47 -5.03 -2.69 -199 -141 -1.10 -0.88 -0.70 -0.53 -036 0.00 029 0.82 240 3.37

5% -800 -579 299 218 151 -120  -1.00 -082 -0.65 -0.46 -027 0.00 0.1 1.88 2.62
95% -546 434 236 -180 -130 -1.00 -0.78 -0.60 -044 -0.19 0.00 055 1.08 299 422
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Next, we present more detailed results for the analysis that checks the sensitivity of the posterior predictive
distribution of alpha on its prior predictive distribution. To achieve the desired change in the prior predictive
distribution, we replace the D (1) prior with the D (1, 3, 3) prior (as above), and also we vary the baseline hy-
perprior parameters for the population mean and variance of the negative and positive components of the alpha
distribution. In particular, in the baseline priors we use parameters K = 0, K , = 100, 4 K, = 1,and A K, =
A A, = A A, = 1, and in the alternative specification for which we present results here we use K = -6, K , =
0.5, 4 K, = 4, and (as in the baseline) A K, = A A, = A A, = 1. The former parameter values (combined with
our other prior parameters) imply that the prior predictive density is almost flat for all nonzero values of alpha ex-
cept those very close to zero, while the latter imply that the prior predictive density is concentrated over a small
range of values away from zero. As we show in Figure C.6, the change in the prior predictive density is drastic
but the effect on the posterior predictive density is very small. In Tables C.21 and C.22, we also present statis-
tics for the posteriors of the population proportions of zero-alpha, negative-alpha, and positive-alpha funds, and

various percentiles of the estimated distribution of annualized alpha when using the alternative prior parameters.

0.7 ‘ ‘ ‘ 0.7
0.67 1 0.6f
0.5¢ 1 0.57
0.41 1 04y
0.37 1 03
0.2} 1 021

0.1t

st i o
0 L
2 4 =6 —4 -2 0 2 4
(a) Prior predictive density, baseline vs alternative. (b) Posterior predictive density, baseline vs alternative.

Figure C.6: Plots of the prior and posterior predictive density of a; at a; # 0, for the baseline prior specification
(r ~D(1),x, =0, K, = 100, i& =1, Aﬁa = i& = A/\a = 1) and for an alternative (x ~ D (1,3, 3),
k, = —6, KKAZ: 0.5, i& =4, Aﬁa = iéa = AA@ =1).In Panel (a), we plot the prior predictive density for the
bggeline prior;;eciﬁcation (in solid blue) and for the alternative prior specification (in dotted red). In Panel (b), we plot
the posterior predictive density for the baseline prior specification (in solid blue) and for the alternative prior specification
(in dotted red). For clarity, we do not represent the point mass at zero alpha, which has probability 0.33 for the baseline
and 0.14 for the alternative prior predictive density, and probability 0.09 for the baseline and 0.08 for the alternative
posterior predictive density.
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Table C.21: Proportions of Fund Types — Sensitivity to Prior Predictive Distribution

Analysis of the sensitivity of the posterior distribution of the population proportions of zero-alpha, negative-alpha, and
positive-alpha funds, to the alternative specification for the prior predictive distribution implied by replacing # ~ D (1)
with 7 ~ D (1, 3, 3) and the baseline values for hyperparameters x,. , K, ,

The 95% HPDI is the smallest interval such that the posterior probability that a parameter lies in it is 0.95. NSE stands
for autocorrelation-adjusted numerical standard errors for the posterior mean estimate of each parameter.

and 1x with —6, 0.5, and 4, respectively.

Mean Median Std.Dev. 95% HPDI  NSE
w0 0.08 0.06 0.06 [0.00,0.21] 0.00
T 0.80 0.82 0.06 [0.68,0.88] 0.00
7t 0.12 0.11 0.03 [0.06,0.20] 0.00

Table C.22: Estimated Percentiles of Skill — Sensitivity to Prior Predictive Distribution

Analysis of the sensitivity of the percentiles of the estimated population distribution of annualized alpha (expressed
as a percent) to the alternative specification for the prior predictive distribution implied by replacing # ~ D (1) with
m ~ D (1, 3, 3) and the baseline values for hyperparameters x,. , K, ,and A with —6, 0.5, and 4, respectively. We

report the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest
interval such that the posterior probability that a parameter lies in it is 0.90.

Percentiles

O.Sth 1St Sth 10th 20th 30th 40th 50th 60th 70th Soth 90th 95th 99th 99.5th

Posterior Mean  -6.55 -5.05 -2.67 -198 -141 -1.10 -0.89 -0.71 -0.54 -037 0.00 029 092 239 3.26

5% -805 -592 -3.02 219 -152 -121 -1.00  -0.83 -066 -049 -029 000 0.51 1.85 242
95% -543 425 233  -178 -130 -1.00 -0.78 -0.60 -0.43 0.00 0.00 0.63 122 298 4.15
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C.13 Dependence between model parameters

In this section, we present results from the estimation of the model that allows for a type-specific distribution
for all model parameters — skill «;, the factor loadings f;, and fund return error precision i; — as well as
a full correlation matrix between them, as presented in Section 8.2 of the paper. In Table C.23 we present
results on the posterior distribution of population correlations between alpha, the factor loadings, and the
error precision, in Table C.24, we present results on the posterior distribution of the population proportions
of zero-, negative-, and positive-alpha funds, and in Table C.25 we present the percentiles of the estimated
distributions of alpha and the factor loadings (separately for zero-, negative-, and positive-alpha funds).

We generally see that the correlations between alpha and the factor loadings and alpha and the error
precision are quite small in magnitude. Furthermore, though the estimated distributions of the factor loadings
differ between zero-, negative-, and positive-alpha funds, importantly, the skill distribution we estimate here
is similar to the one we estimate in the baseline model. This shows that the baseline model is robust to the
presence of weak correlation between alpha and the other model parameters.

Table C.23: Correlation Matrix — Specification with Full Correlation

Means and standard deviations (in parentheses) of the posterior distributions of population correlations between alpha,
the factor loadings, and the error precision, estimated with returns net of expenses using the K~ =2, K™ = 1 model that
allows alpha, the factor loadings, and the error precision to be correlated.

Panel A: Zero-alpha funds Panel B: Negative-alpha funds Panel C: Positive-alpha funds

'BM BSMB ﬁHML 'BUMD h BM BSMB ﬁHML 'BUMD h BM BSMB ﬁHML 'BUMD h

a 0 0 0 0 0 —0.13 -0.15 —-001 —0.11  0.09 0.03 —0.09 —0.17 0.09 0.16
© O (0) © O 0.03) (0.03) (0.03) (0.03) (0.02)  (0.12) (0.11) (0.12) (0.06) (0.17)

By 0.02 024 —026 —0.08 036 —0.56 047 —025 0.07 —0.69 —0.09 —0.10
0.05) (0.06) (0.05) (0.04) 0.02) (0.01) (0.02) (0.02) 0.04) (0.02) (0.03) (0.03)

Bous —0.05 —0.09 —0.03 —0.06 033 —035 —0.07 —0.10 —0.20
0.06)  (0.06) (0.03) 0.02) (0.02) (0.01) 0.04)  (0.05) (0.04)

B -0.30 —0.16 —-0.55  0.07 —025  0.07
(0.06)  (0.03) 0.01) (0.01) (0.03)  (0.02)

Buw 0.02 —0.19 —0.09
(0.02) (0.02) (0.03)
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Table C.24: Proportions of Fund Types — Specification with Full Correlation

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated with net returns using the K~ = 2, K+ = 1 model that allows for full correlation between alpha, the factor
loadings, and the error precision. The 95% HPDI is the smallest interval such that the posterior probability that a
parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior mean
estimate of each parameter.

Mean Median Std.Dev. 95% HPDI  NSE
70 0.15 0.15 0.01 [0.12,0.17] 0.00
T 0.65 0.65 0.02 [0.62,0.69] 0.00
7t 0.20 0.20 0.01 [0.18,0.23] 0.00

Table C.25: Percentiles of Estimated Distributions — Specification with Full Correlation

Percentiles of the estimated distributions of annualized alpha (expressed as a percent) and factor loadings, estimated with
net returns in the K ~=2, K T=1 model that allows for full correlation between alpha, factor loadings, and error precision.

Percentiles
0. sth lsl Sth loth 201h 30th 40th Soth 60th 701h solh 90th 9 sth 99th 99 sth
o -6.37 -5.11 -277 -197 -128 -091 -0.66 -046 -0.25 0.00 005 052 1.01 268 3.73
Zero-Alpha Funds
Bum -0.10 -0.03 0.18 029 043 052 061 068 076 084 094 107 1.19 139 1.47
Bsms -0.38 -0.34 -024 -0.19 -0.12 -0.07 -0.03 0.00 0.04 008 0.13 020 025 0.35 0.39
B -0.36 -032 -0.18 -0.11 -0.03 004 009 014 019 024 030 039 046 0.59 0.64
Bump -0.25 -0.23 -0.16 -0.13 -0.09 -0.06 -0.03 -0.01 0.01 0.04 007 0.11 0.15 0.21 0.23
Negative-Alpha Funds
Bum 069 072 080 084 089 092 095 098 1.01 1.04 108 1.12 1.16 124 1.27
Bsms -041 -037 -025 -0.19 -0.11 -0.04 0.02 0.08 0.17 038 055 067 075 0.89 0.93
Bumr -0.70 -0.63 -044 -034 -022 -0.13 -0.05 0.02 0.09 0.16 025 038 048 0.67 0.74
Bump -0.24 -022 -0.15 -0.11 -0.06 -0.03 -0.00 002 005 0.08 0.11 0.15 0.19 026 0.29
Positive-Alpha Funds
Bum 036 043 0.60 0.70 0.81 0.89 096 1.03 1.09 1.16 124 136 145 1.63 1.69
Bsms -0.19 -0.14 001 009 0.19 026 032 038 043 049 056 066 074 0.89 0.95
Buavw -1.54 -140 -1.00 -0.80 -0.54 -036 -0.21 -0.06 0.09 024 042 068 0.89 1.28 1.42
Bump -044 -040 -029 -023 -0.16 -0.11 -0.06 -0.03 0.01 0.06 0.11 0.18 024 0.34 0.38
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C.14 Conditional asset-pricing model

In this section, we present results from the estimation of the model that allows for funds’ market factor
loadings to be time-varying, by allowing them to depend in a fund-specific manner on the T-bill rate,
the dividend yield, the term spread, and the default spread; see Section 8.3 of the paper for details. In
particular, in Table C.26, we present results on the posterior distributions of the population proportions
of funds with zero, negative, and positive alpha, in Table C.27 we present the percentiles of the estimated
distribution of alpha, the factor loadings, and the coefficients on the conditioning variables, and in Figure
C.7 we compare the estimated distributions of alpha and the factor loadings from the two versions of
our model: the baseline, in which each fund’s market factor loading is constant, and the conditional one,
in which this loading is allowed to be time-varying in a fund-specific manner.

Table C.26: Proportions of Fund Types — Conditional Model

Results on the posterior distributions of the proportions of funds with zero, negative, and positive alpha, estimated
with returns net of expenses using the conditional model presented in Section 8.3 of the paper. Each fund’s market
loading at month ¢ may depend in a fund-specific manner on the following quantities at month ¢# — 1: the 1-month
T-bill rate; the dividend yield of the CRSP value-weighted index; the term spread, proxied by the yield difference
between constant-maturity 10-year Treasury bonds and 3-month T-bills; and the default spread, proxied by the yield
difference between Moody’s Baa- and Aaa-rated corporate bonds. The 95% HPDI is the smallest interval such
that the posterior probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical
standard errors for posterior mean estimates.

Mean Median Std.Dev. 95% HPDI  NSE
0 0.08 0.06 0.06 [0.00,0.22] 0.00
T 0.81 0.82 0.05 [0.69,0.90] 0.00
7t 0.11 0.11 0.03 [0.05,0.18] 0.00
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Table C.27: Percentiles of Estimated Distributions — Conditional Model

Percentiles of the estimated distributions of annualized alpha (expressed as a percent), the factor loadings, and
the coefficients on the conditioning variables, estimated with returns net of expenses using the conditional model
presented in Section 8.3 of the paper. Each fund’s market factor loading at month # may depend in a fund-specific
manner on the following quantities at month # — 1: i) the one-month T-bill rate (TB); ii) the dividend yield (DY) of
the CRSP value-weighted index; iii) the term spread (TS), proxied by the yield difference between constant-maturity
10-year Treasury bonds and three-month T-bills; and iv) the default spread (DS), proxied by the yield difference
between Moody’s Baa-rated and Aaa-rated corporate bonds.

Percentiles

O.Sth 15t Sth loth zoth 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

« -6.55 -5.05  -277 -211 -156 -125 -1.03 -084 -0.67 -048 -0.17 021 080 238 3.32
Bum 0.14 0.22 0.45 0.57 0.72 0.82 0.91 1.00 108 1.17 128 143 155 1.78 1.87
Bsmp 061 -0.53 -032 -021 -0.07 0.03 0.11 0.19 027 035 045 059 070 091 0.99
By,  -0.84 -0.76  -0.53 -041 -027 -0.16 -007 001 010 0.19 030 044 056 0.79 0.87

Bump 027 -024 -0.17 -0.13 -0.08 -0.05 -002 001 003 0.06 010 0.14 0.18 026 0.28
YrB -130.94 -119.26 -87.49 -7049 -49.86 -35.07 -22.44 -10.69 1.09 13.67 2846 49.00 6592 9821 109.42
Yoy -37.65 -33.82 -23.55 -18.13 -11.52 -6.76 -2.67 1.12 494 899 1377 20.36 25.84 36.03 39.72
Yrs -0.17 -0.15s -0.11 -0.08 -0.05 -0.03 -002 000 002 0.03 005 008 010 0.15 0.16
s -0.44 -040 -029 -024 -0.17 -0.12 -0.08 -0.04 0.00 004 0.09 016 022 032 0.36
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Figure C.7: Comparison of the estimated densities of annualized alpha (expressed as a percent) and factor loadings
for two models: blue solid lines plot densities from a model in which funds’ market loadings are constant, red
dashed lines plot densities from a model in which they are time-varying. Both sets of densities are estimated using
our model with an unknown number of components for the alpha distribution of negative-alpha and positive-alpha
funds. The black vertical arrow at zero alpha represents a point mass for both estimated distributions; the point mass
for the model with constant market loadings has probability 0.09 and the other model’s point mass has probability
0.08. Both models are estimated using returns net of expenses for 3,497 funds.
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C.15 Distributional assumptions for errors, factor loadings

In this section, we present tables and figures relating to our analysis in Section 8.4 in the paper, of the sen-
sitivity of our results to distributional assumptions about the fund return errors and about the factor loadings
in Equation 1 in the paper.

First, we present results from an estimation in which we exclude, for each fund, the observations whose
residuals most deviate from the values of a normal random sample of size equal to the number of observations
for that fund; we remove no more than 8 observations per fund, and in total we remove 1.8% of all observations.
In this restricted data set, our assumption that each fund’s errors in Equation 1 are normal should be even
more accurate than in the whole data set, therefore this analysis can help determine whether the results we
present using the whole data set are driven by non-normality in the errors. In Table C.28, we present results
on the posterior distribution of the population proportions of funds with zero, negative, and positive alpha,
and in Table C.29 we present various percentiles of the estimated distribution of alpha. In Figure C.8, we
plot the estimated skill densities from the estimation that uses the whole data set and from the one that uses
the restricted data set. In Table C.28, we see that the proportions we estimate are largely unchanged. In Table
C.29 and in Figure C.8, we see that the estimated skill distribution is very similar in both cases, with the
most noteworthy difference being that the distribution estimated on the restricted data set has slightly fatter
tails, especially in the left. The reason for this is that the excluded observations correspond to residuals that
are large, so by excluding them the posterior estimates of fund-level as have lower variance. As a result,
there is less shrinkage toward the mean, therefore not only do we place more fund-level as in the tails, but
we are also more confident that they should be in the tails, so we estimate fatter tails. The effect is stronger
on the left than on the right tail, because more of the funds for which the exclusion of observations leads
to a big reduction in their error variance are located in the left than in the right tail.

Table C.28: Proportions of Fund Types — Excluding non-Normal Residuals

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated using our baseline model with net returns for 3,497 funds, but excluding, for each fund, the observations whose
residuals most deviate from the values of an equal-sized normal random sample. The 95% HPDI is the smallest interval
such that the posterior probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical
standard errors for the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI  NSE
=0 0.08 0.08 0.06 [0.00,0.22] 0.00
T 0.78 0.78 0.05 [0.68,0.86] 0.00
ot 0.14 0.13 0.04 [0.07,0.21] 0.00
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Table C.29: Percentiles of Estimated Skill Distribution — Excluding non-Normal Residuals

Percentiles of estimated distributions of annualized alpha (expressed as a percent) from our estimation on the whole
data set (in Panel A) and from the estimation on a restricted data set (in Panel B), which excludes, for each fund, the
observations whose residuals most deviate from the values of a normal random sample of size equal to the number of
observations for that fund. Both estimations use returns net of expenses for 3,497 funds. For each estimation, we report
the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest interval
such that the posterior probability that a parameter lies in it is 0.90.

Panel A: Estimation using the whole data set

Percentiles

0. sth 18t sth loth Zolh 30th 401h 50th 60[h 70th soth 90th 9 Sth 991]1 99 sth

Posterior Mean  -6.60 -5.01 -2.62 -196 -142 -1.12 -096 -0.72 -0.55 -036 0.00 030 0.87 235 3.24

5% -848 -595 -297 -2.17 -1.54 -125 -1.04 -086 -0.69 -0.50 -0.29 0.00 049 1.77 2.40
95% -536 -4.04 -225 -1.77 -1.30 -1.00 -0.78 -0.60 -042 0.00 0.02 0.61 120 298 4.24

Panel B: Estimation using the restricted data set

Percentiles

0.5“1 18t sth loth 201h 30th 401h 50th 60th 70th soth 90th 9Sth 99th 99.5th

Posterior Mean  -8.97 -6.41 -298 -220 -1.61 -1.30 -1.07 -0.87 -0.66 -042 000 046 1.09 251 3.30

5% -1146 -1.74 -346 -247 -1.73 -141 -120 -1.00 -0.81 -0.57 -0.28 0.00 0.81 2.04 2.61
95%  -7.07 -523 -256 -198 -1.51 -1.19 -095 -0.74 -0.54 0.00 0.04 0.74 137 3.01 4.08
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Figure C.8: Plots of the estimated density of annualized 4-factor alphas, expressed as percents. In solid blue, we plot the
density estimated using all observations of the 3,497 funds in our data, i.e., the density from our baseline estimation. In
dotted red, we plot the density estimated using the same data but excluding the 1.8% of all observations whose residuals
most deviate from the normal distribution. The black vertical arrow at zero alpha represents a point mass for both
estimated densities; the point mass has probability 0.09 for the baseline estimation and probability 0.08 for the estimation
on the restricted data set.
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Now, we turn our attention to our assumption that the factor loadings f are normal. In Figure C.9, we
present Q-Q plots of posterior mean fs estimated using our methodology versus OLS estimates of the fs. The
plots lie quite close to the 45° line, showing that the quantiles of the two sets of distributions are very similar, and
therefore that shrinkage in our posterior estimates is very limited; only the posteriors for Sump exhibit (a little)
more than a non-trivial degree of shrinkage. This implies that our distributional assumption is unlikely to have

a significant effect on our fund-level estimates of alpha, and therefore on our estimated distribution of alpha.
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Figure C.9: Quantile-Quantile plots of posterior mean fs estimated using our methodology versus OLS estimates
of fBs. The blue cross marks plot the quantiles, and the solid red line plots the 45° line.

Next, we present results from an estimation in which the scale A of the inverse Wishart prior distribution
for the population variance Vy of f is large (A, = 10°I instead of A » = I as in our baseline estimation),
which effectively eliminates shrinkage in the posterior estimates of fund-level fs. In Figure C.10, we present
Q-Q plots for the posterior mean fs estimated using our methodology with “no shrinkage” priors for the fs
versus OLS estimates of the fs; comparing these Q-Q plots with those in Figure C.9, we see that now all
plots lie almost exactly on the 45° line, verifying that shrinkage in our estimates for the fs has effectively
been eliminated. In Table C.30, we present results on the posterior distribution of the population proportions

of funds with zero, negative, and positive alpha, and in Table C.31 we present various percentiles of the
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estimated distribution of alpha, from this estimation. In Figure C.11, we plot the estimated skill densities
from the baseline estimation and from the estimation that imposes no shrinkage. These tables and figures
show that the results on skill are almost identical for the two estimations: the one with the baseline priors,
which induces little shrinkage, and the one with these alternative priors, which induces no shrinkage. Thus,

we conclude that our baseline distributional assumption for the s does not drive our main results in the paper.
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Figure C.10: Quantile-Quantile plots of posterior mean fs estimated using our methodology — but with priors that
impose very little shrinkage on f — versus OLS estimates of fs. The blue cross marks plot the quantiles, and the solid

red line plots the 45° line.

Table C.30: Proportions of Fund Types — No Shrinkage for s

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated using our model presented in Section 2 with returns net of expenses for 3,497 funds, but with A; = 1031
instead of Ay = I as in the baseline estimation. The 95% HPDI is the smallest interval such that the posterior probability
that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior

mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI  NSE
0 0.08 0.07 0.07 [0.00,0.25] 0.00
T 0.79 0.79 0.06 [0.65,0.88] 0.00
7t 0.13 0.13 0.04 [0.06,0.23] 0.00
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Table C.31: Estimated Percentiles of Skill — Baseline vs. Model with no Shrinkage for fs

Percentiles of estimated distributions of annualized alpha (expressed as a percent) from our baseline specification (in
Panel A) and from the specification with no shrinkage for fis, i.e., with prior parameter Ay = 1037 instead of A p =1 (in
Panel B). Both specifications are estimated with returns net of expenses for 3,497 funds. For each specification, we report
the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest interval
such that the posterior probability that a parameter lies in it is 0.90.

Panel A: Baseline specification

Percentiles

o.5th gt sthqoth  gth  3gth  4oth  50th  goth  79th  goth ggth gsth ggth g9 5th

Posterior Mean  -6.60 -5.01 -2.62 -196 -1.42 -1.12 -096 -0.72 -0.55 -036 0.00 030 0.87 235 3.24

5% -848 -595 -297 -2.17 -154 -125 -1.04 -0.86 -0.69 -050 -0.29 0.00 049 1.77 2.40
95% -536 -4.04 -225 -1.77 -130 -1.00 -0.78 -0.60 -042 000 002 061 120 298 4.24

Panel B: Specification with no shrinkage for fs

Percentiles

o.5th gt sth qoth  gth  3gth  4oth  50th  goth 79th  goth ggth ogsth ggth g9 5th

Posterior Mean  -6.47 -499 -2.66 -198 -142 -1.12 -090 -0.71 -0.54 -035 0.00 033 091 241 3.31

5% -8.03 -5.84 -301 -2.19 -154 -124 -1.03 -0.85 -0.67 -048 -0.28 0.00 0.53 1.86 2.45
95% -532 -419 -229 -1.77 -131 -101 -0.78 -0.60 -043 000 005 0.65 121 299 421
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Figure C.11: Estimated density of annualized 4-factor alphas (expressed as a percent). The blue solid line plots the
estimated population density of alpha from our baseline specification from Section 2. The red dotted line plots the
estimated population density of alpha from an estimation in which the scale A of the inverse Wishart prior distribution
for the population variance Vy of f is large (A g = 107 instead of A p=1as in the baseline), so effectively with no
shrinkage for the estimation of fund-level §. The black vertical arrow at zero alpha represents a point mass for both
estimated densities; the point mass has probability 0.09 for the baseline model and probability 0.08 for the specification
with large A 5. For both plots, returns net of expenses for 3,497 funds are used.
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C.16 Cross-sectional error dependence

In Section 8.5 of the paper, we present a model that allows for cross-sectional dependence in the error terms
through linear latent error factors. To estimate this model, in the Gibbs sampler we i) add a block in which
we draw from the conditional posterior of the latent factors (see Geweke and Zhou, 1996); ii) we augment
the observed factors with the latent factors; and iii) we replace p; = (a;, ,Bl./)/ with p} == (a;, B, 6})’
and h; with h}, where as we explain in the paper, o; are fund-specific error factor loadings; and &;, ~
N (0, h;‘_l) is the cross-sectionally independent part of the error term, with 4} a fund-specific precision. In
this section, we present results from the estimation of this model. In particular, we present results from the
specification with a single latent factor; results from the specification with 4 latent factors are very similar.

In Table C.32 we present results on the posteriors of the population proportions of funds with zero,
negative, and positive alpha, in Table C.33 we present the percentiles of the estimated distributions of
alpha and the factor loadings, and in Figure C.12 we compare the estimated distributions of alpha and
the factor loadings from two versions of our model: one in which errors are assumed to be independent
and one in which this is relaxed.

In Figure C.13, we present a sensitivity analysis of the effect of changing the prior for the distribution
of the latent error factor coefficients on the estimated population densities of alpha and factor loadings.
We find that there is an almost imperceptible effect to changing by several orders of magnitude the scale of
the inverse Wishart prior distribution for the population variance V; of the latent error factor coefficients J.

Table C.32: Proportions of Fund Types — Cross-sectional Error Dependence

Results on the posteriors of the population proportions of funds with zero, negative, and positive alpha, estimated
with returns net of expenses using the model in which errors are cross-sectionally dependent through the latent error
factor model presented in Section 8.5 of the paper. The 95% HPDI is the smallest interval such that the posterior
probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for
the posterior mean estimates.

Mean Median Std.Dev. 95% HPDI  NSE
0 0.08 0.07 0.06 [0.00,0.22] 0.00
T 0.79 0.80 0.05 [0.68,0.87] 0.00
7t 0.13 0.13 0.04 [0.07,0.21] 0.00

C-41



Table C.33: Percentiles of Estimated Distributions — Cross-sectional Error Dependence

Percentiles of the estimated population distributions of annualized alpha (expressed as a percent) and factor loadings,
estimated with returns net of expenses using the model in which errors are cross-sectionally dependent through the
latent error factor model presented in Section 8.5 of the paper.

Percentiles

O.Sth 1St Sth 10th 20th 30th 40th 50th 60th 70th Soth 90th 95th 99th 99~5th

a -6.88 -535 -294 -223 -1.63 -131 -1.07 -087 -0.67 -046 0.00 036 098 2.53 3.40
Bum 042 047 061 069 078 085 091 09 1.01 1.07 114 123 131 145 1.51
Bgmyg 063 -056 -035 -024 -0.11 -001 007 015 022 031 040 054 065 085 0.93

Byyy, 076 -070 -054 -045 -034 -027 -020 -0.14 -0.08 -0.02 006 0.16 025 041 0.47
Buwmp 023 -021 -0.14 -0.10 -0.06 -0.03 000 003 005 008 0.11 016 0.19 026 0.29

« ﬁM ﬂSMB BHML ﬁUMD

25 1.5 2 5

0.6 ) s Iy 4

0.4 1.5 ! ’ .: 3
M AR

0.2 : 05 05 b/ "- 2

0.5 - . 1
.

0 0 0 0 - 0

-6 4 -2 0 2 4 0 0.5 1 1.5 -1 0 1 -1 0 1 -0.5 0 0.5

Figure C.12: Comparison of the estimated population densities of annualized alpha (expressed as a percent) and
factor loadings under two models: blue solid lines plot densities from a model in which errors are independent
across funds, and red dashed lines plot densities from a model in which errors are cross-sectionally dependent
through the latent error factor model presented in Section 8.5 of the paper. The black vertical arrow at zero alpha
represents a point mass, which has probability 0.09 for the former model and probability 0.08 for the latter model.
Both models are estimated using returns net of expenses for 3,497 funds.
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Figure C.13: Sensitivity analysis of the estimated population densities of annualized alpha (expressed as a percent)
and factor loadings for the model in which errors are cross-sectionally dependent through the latent linear error
factor model presented in Section 8.5 of the paper. The densities plotted in blue solid lines correspond to the
estimated densities from an estimation in which the scale of the inverse Wishart prior distribution for the population
variance Vs of the latent error factor coefficients J is small, while the densities plotted in red dashed lines correspond
to the estimated densities from an estimation in which the scale of the inverse Wishart prior distribution for Vs
is large. The black vertical arrow at zero alpha represents a point mass with probability 0.08 for both estimated
distributions. Both sets of densities are estimated using returns net of expenses for 3,497 funds.
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C.17 Variations to model specification

In this section, we present results from two variations of our specification of the alpha distribution (see
Section 8.6 of the paper). First we replace our assumption that nonzero alphas are drawn from two
non-overlapping distributions — one for negative-alpha and one for positive-alpha funds — with the as-
sumption that they are drawn from a common distribution, and then we replace the point mass at zero with
a narrow normal centered at zero. Table C.34 presents posterior results for the population proportions of
zero-alpha and nonzero-alpha funds estimated using the alternative model with a point mass and a normal,
and Table C.35 presents various percentiles of the estimated distributions of alpha and the factor loadings
using the alternative model with a narrow normal and two non-overlapping mixtures of log-normals.

Table C.34: Proportions of Fund Types — Point Mass and Normal

Results on the posterior distributions of the population proportions of funds with zero and nonzero alpha, estimated
with returns net of expenses using a model in which alpha is drawn from a mixture distribution with two components:
a point mass at zero and a normal distribution. The 95% HPDI is the smallest interval such that the posterior
probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for
the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI  NSE
0 0.08 0.06 0.07 [0.00,0.24] 0.00
N 0.92 0.94 0.07 [0.76,1.00] 0.00

Table C.35: Percentiles of Estimated Distributions — Narrow Normal

Percentiles of the estimated population distributions of annualized alpha (expressed as a percent) and factor loadings
estimated from a model in which alpha is drawn from a mixture with three components: a narrow normal centered
at zero and two non-overlapping mixtures of log-normal distributions (one for negative- and one for positive-alpha
funds). The model is estimated with returns net of expenses for 3,497 funds.

Percentiles
05th gt sth qoth  pth  3gth  4oth  59th  goth  79th  goth  ggth g5th  ggth g9 sth

[e -6.52 -501 -2.65 -198 -142 -1.12 -090 -0.72 -055 -035 -0.08 029 087 234 3.23
Bum 040 046 0.60 0.68 077 084 09 095 100 1.06 1.13 122 130 144 1.50
Bsmg 060 -052 -031 -020 -007 003 011 019 027 035 045 058 069 0.90 0.98
By, 085 -077 -054 -042 -027 -0.16 -007 002 0.11 020 030 045 058 0.80 0.89
Bymp 026 -023 -016 -0.12 -008 -004 -0.02 001 004 006 010 0.14 0.18 025 0.28
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C.18 Results excluding first two years per fund

Here, we present results from estimating our baseline model on a restricted data set that excludes returns
observations for the first two years of each fund’s life. The year of inception for most funds (89%) is
provided in the CRSP database. Among the funds for which this information is provided, about 70%
report returns in the database from their very first year of existence. As a result, for the 11% of funds
for which the year of inception is not provided, we assume that it coincides with the time at which they
start reporting their returns. Extrapolating the 70% figure stated earlier to all funds, it appears that this
assumption would yield an incorrect inception year for only 3% of all funds. In any case, these mistakes
would make our analysis here even more conservative, since by excluding for these funds the first two
years of returns observations available in the data, we would effectively be excluding observations for
more than the first two years since inception.

In Table C.36, we present statistics for the estimated posterior distribution of the population propor-
tions of zero-alpha, negative-alpha, and positive-alpha funds. We see that, as in the baseline estimation,
the large majority of funds have negative alpha.

Table C.36: Proportions of Fund Types — Excluding first two years of data

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated using our baseline model with net returns for 3,497 funds, but excluding the first two years of returns for
each fund. The 95% HPDI is the smallest interval such that the posterior probability that a parameter lies in it is
0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior mean estimate of each

parameter.
Mean Median Std.Dev. 95% HPDI  NSE
w0 0.07 0.06 0.06 [0.00,0.20] 0.00
T 0.81 0.81 0.05 [0.70,0.90] 0.00
7t 0.12 0.11 0.04 [0.05,0.20] 0.00
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C.19 MCMC without reversible jumps

In this section, we present the results from the model with K~ = 2 components for the alpha distribution
of negative-alpha funds and K+ = 1 component for the alpha distribution of positive-alpha funds. This is
the model with the highest posterior probability according to our baseline estimation, which incorporates
model specification uncertainty (see Table 3 in the paper). That is, viewing our analysis as a model selec-
tion analysis, this is essentially the model it selects. As we mention in the paper, for computational conve-
nience and/or tractability, we use this model in the construction of portfolios in Section 6.1, in the analysis
in Section 7.1 of the distribution of skill by fund investment objective, in the analysis in Section 7.2 of the
evolution of skill over time, and in the robustness check in Section 8.2 in which we allow for a full corre-
lation matrix between all model parameters, so its results can be useful as a benchmark for comparison.

In Table C.37, we present results on the posterior distribution of the population proportions of funds
with zero, negative, and positive alpha, in Table C.38 we present the percentiles of the estimated densities
for alpha and the factor loadings, and in Figure C.14 we present the estimated densities for alpha and
the factor loadings and we compare them with those from the baseline model that incorporates model
specification uncertainty (i.e., K—, Kt are estimated). In short, we find the proportions of funds with
zero, negative, and positive alpha to be 14%, 71% and 15%, respectively, which are not very far from the
ones from our baseline estimation; and the estimated distributions of factor loadings are almost identical,
and the estimated distribution of alpha is quite similar with those from the baseline model.

Table C.37: Proportions of Fund Types — K~ =2, K™ = 1 Model

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated with returns net of expenses using the model with two negative components and one positive component
for the distribution of alpha. The 95% HPDI is the smallest interval such that the posterior probability that a
parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior mean
estimate of each parameter.

Mean Median Std.Dev. 95% HPDI  NSE
0 0.14 0.12 0.09 [0.01,0.33] 0.00
T 0.71 0.72 0.06 [0.60,0.83] 0.00
7t 0.15 0.15 0.05 [0.05,0.26] 0.00
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Table C.38: Percentiles of Estimated Distributions — K~ =2, = K™ = 1 Model

Percentiles of estimated population distributions of annualized alpha (expressed as a percent) and factor loadings,
for the model with two negative components and one positive component for the alpha distribution, estimated with
returns net of expenses.

Percentiles

O.Sth 1St Sth 10th 20th 30th 40th 50th 60th 70th Soth 90th 95th 99th 99~5th

a -6.87 -454 -239 -190 -147 -121 -1.01 -083 -0.63 -0.18 0.00 029 0.78 239 3.37
Bum 040 046 060 068 077 084 090 095 1.00 1.06 1.13 122 130 145 1.50
Bgyg 060 -052 -031 -020 -007 003 011 019 027 035 045 058 069 090 0.97
Buyy, 085 -077 -054 -041 -027 -0.16 -007 002 0.10 020 030 045 058 081 0.89
Bump 026 -023 -0.16 -0.12 -008 -0.04 -0.02 001 004 006 010 014 0.18 025 0.28
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Figure C.14: Comparison of the estimated densities of annualized alpha (expressed as a percent) and factor
loadings under two models: blue solid lines plot densities from our baseline model presented in Section 2, red
dashed lines plot densities from the K~ = 2, K™ = 1 model with two negative components and one positive
component for the distribution of alpha. The black vertical arrow at zero alpha represents a point mass for both
estimated distributions; the point mass has probability 0.09 for the baseline model, and probability 0.14 for the
K~ =2, Kt = 1 model. Both models are estimated using returns net of expenses for 3,497 funds.
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